终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    浙江省温州市苍南县2022年中考数学押题试卷含解析

    立即下载
    加入资料篮
    浙江省温州市苍南县2022年中考数学押题试卷含解析第1页
    浙江省温州市苍南县2022年中考数学押题试卷含解析第2页
    浙江省温州市苍南县2022年中考数学押题试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省温州市苍南县2022年中考数学押题试卷含解析

    展开

    这是一份浙江省温州市苍南县2022年中考数学押题试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,二次函数y=ax1+bx+c等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列二次根式中,最简二次根式是( )
    A. B. C. D.
    2.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=(  )

    A.6 B.6 C.3 D.3
    3.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )

    A.2人 B.16人
    C.20人 D.40人
    4.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是(  )

    A. B.
    C. D.
    5.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有(  )

    A.1个 B.3个 C.4个 D.5个
    6.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为(  )

    A.2π B.4π C.5π D.6π
    7.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是(  )

    A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD
    8.下列大学的校徽图案是轴对称图形的是( )
    A. B. C. D.
    9.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”
    如图所示,请根据所学知识计算:圆形木材的直径AC是(  )

    A.13寸 B.20寸 C.26寸 D.28寸
    10.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是(  )

    A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为2
    二、填空题(共7小题,每小题3分,满分21分)
    11.分式方程-1=的解是x=________.
    12.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有_____(只填写序号).

    13.如图,量角器的0度刻度线为,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点,直尺另一边交量角器于点,,量得,点在量角器上的读数为,则该直尺的宽度为____________.

    14.如图,若双曲线()与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为_____.

    15.已知图中的两个三角形全等,则∠1等于____________.

    16.如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为_____.

    17.如图,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,则的值等于_____

    三、解答题(共7小题,满分69分)
    18.(10分)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.
    判断AF与⊙O的位置关系并说明理由;若⊙O的半径为4,AF=3,求AC的长.
    19.(5分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:

    请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图; 分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.
    20.(8分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)

    (1)求这7天内小申家每天用水量的平均数和中位数;
    (2)求第3天小申家洗衣服的水占这一天总用水量的百分比;
    (3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.
    21.(10分)解方程:(x﹣3)(x﹣2)﹣4=1.
    22.(10分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
    ①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?
    ②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
    23.(12分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:1.
    (1)求此人所在位置点P的铅直高度.(结果精确到0.1米)
    (2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈,tan63.4°≈2)

    24.(14分)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
    (1)求抛物线的解析式;
    (2)当点P运动到什么位置时,△PAB的面积有最大值?
    (3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
    【详解】
    A.被开方数含能开得尽方的因数或因式,故A不符合题意,
    B.被开方数含能开得尽方的因数或因式,故B不符合题意,
    C.被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意,
    D.被开方数含分母,故D不符合题意.
    故选C.
    【点睛】
    本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
    2、A
    【解析】
    试题分析:根据垂径定理先求BC一半的长,再求BC的长.
    解:如图所示,设OA与BC相交于D点.

    ∵AB=OA=OB=6,
    ∴△OAB是等边三角形.
    又根据垂径定理可得,OA平分BC,
    利用勾股定理可得BD=
    所以BC=2BD=.
    故选A.
    点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O与圆A的半径相等,从而得出△OAB是等边三角形,为后继求解打好基础.
    3、C
    【解析】
    先求出800米跑不合格的百分率,再根据用样本估计总体求出估值.
    【详解】
    400×人.
    故选C.
    【点睛】
    考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.
    4、A
    【解析】
    根据题意,将运动过程分成两段.分段讨论求出解析式即可.
    【详解】
    ∵BD=2,∠B=60°,
    ∴点D到AB距离为,
    当0≤x≤2时,
    y=;
    当2≤x≤4时,y=.
    根据函数解析式,A符合条件.
    故选A.
    【点睛】
    本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.
    5、B
    【解析】
    根据题意和函数的图像,可知抛物线的对称轴为直线x=-=1,即b=-4a,变形为4a+b=0,所以(1)正确;
    由x=-3时,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正确;
    因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正确;
    根据图像可知当x<1时,y随x增大而增大,当x>1时,y随x增大而减小,可知若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1=y3<y1,故(4)不正确;
    根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<x1,故(5)正确.
    正确的共有3个.
    故选B.
    点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b1﹣4ac>0时,抛物线与x轴有1个交点;△=b1﹣4ac=0时,抛物线与x轴有1个交点;△=b1﹣4ac<0时,抛物线与x轴没有交点.
    6、B
    【解析】
    连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.
    【详解】
    连接OA、OC,
    ∵∠ADC=60°,
    ∴∠AOC=2∠ADC=120°,
    则劣弧AC的长为: =4π.
    故选B.

    【点睛】
    本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式 .
    7、B
    【解析】
    由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.
    【详解】
    四边形ABCD是平行四边形,
    ∴AD//BC,AD=BC,
    A、∵AE=CF,
    ∴DE=BF,
    ∴四边形BFDE是平行四边形,
    ∴BE//DF,故本选项能判定BE//DF;
    B、∵BE=DF,
    四边形BFDE是等腰梯形,
    本选项不一定能判定BE//DF;
    C、∵AD//BC,
    ∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
    ∵∠EBF=∠FDE,
    ∴∠BED=∠BFD,
    四边形BFDE是平行四边形,
    ∴BE//DF,
    故本选项能判定BE//DF;
    D、∵AD//BC,
    ∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
    ∵∠BED=∠BFD,
    ∴∠EBF=∠FDE,
    ∴四边形BFDE是平行四边形,
    ∴BE//DF,故本选项能判定BE//DF.
    故选B.
    【点睛】
    本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.
    8、B
    【解析】
    根据轴对称图形的概念对各选项分析判断即可得解.
    【详解】
    解:A、不是轴对称图形,故本选项错误;
    B、是轴对称图形,故本选项正确;
    C、不是轴对称图形,故本选项错误;
    D、不是轴对称图形,故本选项错误.
    故选:B.
    【点睛】
    本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    9、C
    【解析】
    分析:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.
    详解:设⊙O的半径为r.
    在Rt△ADO中,AD=5,OD=r-1,OA=r,
    则有r2=52+(r-1)2,
    解得r=13,
    ∴⊙O的直径为26寸,
    故选C.
    点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题
    10、A
    【解析】
    根据中位数,众数,平均数,方差等知识即可判断;
    【详解】
    观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.
    故选A.
    【点睛】
    本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.

    二、填空题(共7小题,每小题3分,满分21分)
    11、-5
    【解析】
    两边同时乘以(x+3)(x-3),得
    6-x2+9=-x2-3x,
    解得:x=-5,
    检验:当x=-5时,(x+3)(x-3)≠0,所以x=-5是分式方程的解,
    故答案为:-5.
    【点睛】本题考查了解分式方程,解题的关键是方程两边同时乘以最简公分母,切记要进行检验.
    12、③
    【解析】
    根据直线与点的位置关系即可求解.
    【详解】
    ①点A在直线BC上是错误的;
    ②直线AB经过点C是错误的;
    ③直线AB,BC,CA两两相交是正确的;
    ④点B是直线AB,BC,CA的公共点是错误的.
    故答案为③.
    【点睛】
    本题考查了直线、射线、线段,关键是熟练掌握直线、射线、线段的定义.
    13、
    【解析】
    连接OC,OD,OC与AD交于点E,根据圆周角定理有根据垂径定理有: 解直角即可.
    【详解】
    连接OC,OD,OC与AD交于点E,




    直尺的宽度:
    故答案为
    【点睛】
    考查垂径定理,熟记垂径定理是解题的关键.
    14、.
    【解析】
    过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,

    设OC=2x,则BD=x,
    在Rt△OCE中,∠COE=60°,则OE=x,CE=,
    则点C坐标为(x,),
    在Rt△BDF中,BD=x,∠DBF=60°,则BF=,DF=,
    则点D的坐标为(,),
    将点C的坐标代入反比例函数解析式可得:,
    将点D的坐标代入反比例函数解析式可得:,
    则,
    解得:,(舍去),
    故=.故答案为.
    考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质.
    15、58°
    【解析】

    如图,∠2=180°−50°−72°=58°,
    ∵两个三角形全等,
    ∴∠1=∠2=58°.
    故答案为58°.
    16、5
    【解析】
    作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根据AM=AG+MG,列方程可得结论.,AG=CH=a+,根据AM=AG+MG,列方程可得结论.
    【详解】
    解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G,

    设CM=a,
    ∵AB=AC,
    ∴BC=2CM=2a,
    ∵tan∠ACB=2,
    ∴=2,
    ∴AM=2a,
    由勾股定理得:AC=a,
    S△BDC=BC•DH=10,
    •2a•DH=10,
    DH=,
    ∵∠DHM=∠HMG=∠MGD=90°,
    ∴四边形DHMG为矩形,
    ∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,
    ∵∠ADC=90°=∠ADG+∠CDG,
    ∴∠ADG=∠CDH,
    在△ADG和△CDH中,
    ∵,
    ∴△ADG≌△CDH(AAS),
    ∴DG=DH=MG=,AG=CH=a+,
    ∴AM=AG+MG,
    即2a=a++,
    a2=20,
    在Rt△ADC中,AD2+CD2=AC2,
    ∵AD=CD,
    ∴2AD2=5a2=100,
    ∴AD=5或−5(舍),
    故答案为5.
    【点睛】
    本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AG=CH是解决问题的关键,并利用方程的思想解决问题.
    17、
    【解析】
    根据平行线分线段成比例定理解答即可.
    【详解】
    解:∵DE∥BC,AD=2BD,
    ∴,
    ∵EF∥AB,
    ∴,
    故答案为.
    【点睛】
    本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.

    三、解答题(共7小题,满分69分)
    18、解:(1)AF与圆O的相切.理由为:
    如图,连接OC,

    ∵PC为圆O切线,∴CP⊥OC.
    ∴∠OCP=90°.
    ∵OF∥BC,
    ∴∠AOF=∠B,∠COF=∠OCB.
    ∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.
    ∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,
    ∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.
    ∴AF为圆O的切线,即AF与⊙O的位置关系是相切.
    (2)∵△AOF≌△COF,∴∠AOF=∠COF.
    ∵OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC.
    ∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=1.
    ∵S△AOF=•OA•AF=•OF•AE,∴AE=.
    ∴AC=2AE=.
    【解析】
    试题分析:(1)连接OC,先证出∠3=∠2,由SAS证明△OAF≌△OCF,得对应角相等∠OAF=∠OCF,再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;
    (2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE.
    试题解析:(1)连接OC,如图所示:

    ∵AB是⊙O直径,
    ∴∠BCA=90°,
    ∵OF∥BC,
    ∴∠AEO=90°,∠1=∠2,∠B=∠3,
    ∴OF⊥AC,
    ∵OC=OA,
    ∴∠B=∠1,
    ∴∠3=∠2,
    在△OAF和△OCF中,

    ∴△OAF≌△OCF(SAS),
    ∴∠OAF=∠OCF,
    ∵PC是⊙O的切线,
    ∴∠OCF=90°,
    ∴∠OAF=90°,
    ∴FA⊥OA,
    ∴AF是⊙O的切线;
    (2)∵⊙O的半径为4,AF=3,∠OAF=90°,
    ∴OF==1
    ∵FA⊥OA,OF⊥AC,
    ∴AC=2AE,△OAF的面积=AF•OA=OF•AE,
    ∴3×4=1×AE,
    解得:AE=,
    ∴AC=2AE=.
    考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质.
    19、(1)200人;(2)补图见解析;(3)分组后学生学习兴趣为“中”的所占的百分比为30%;对应扇形的圆心角为108°.
    【解析】
    试题分析:(1)用“极高”的人数所占的百分比,即可解答;
    (2)求出“高”的人数,即可补全统计图;
    (3)用“中”的人数调查的学生人数,即可得到所占的百分比,所占的百分比即可求出对应的扇形圆心角的度数.
    试题解析:(人).
    学生学习兴趣为“高”的人数为:(人).
    补全统计图如下:

    分组后学生学习兴趣为“中”的所占的百分比为:
    学生学习兴趣为“中”对应扇形的圆心角为:
    20、(1)平均数为800升,中位数为800升;(2)12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,一个月估计可以节约用水3000升.
    【解析】
    试题分析:(1)根据平均数和中位数的定义求解可得;
    (2)用洗衣服的水量除以第3天的用水总量即可得;
    (3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.
    试题解析:解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+825+805)÷7=800(升),
    将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,
    ∴用水量的中位数为800升;
    (2)×100%=12.5%.
    答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;
    (3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.
    21、x1=,x2=
    【解析】
    试题分析:方程整理为一般形式,找出a,b,c的值,代入求根公式即可求出解.
    试题解析:解:方程化为,,,.
    >1.

    即,.
    22、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.
    【解析】
    【分析】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,由条件可列方程组,则可求得答案;
    (2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m的不等式组,则可求得m的取值范围,且m为整数,则可求得m的值,即可求得进货方案;
    ②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.
    【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
    根据题意可得,解得,
    答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;
    (2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,
    根据题意可得 ,解得75<m≤78,
    ∵m为整数,
    ∴m的值为76、77、78,
    ∴进货方案有3种,分别为:
    方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,
    方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,
    方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;
    ②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,
    ∵5>0,
    ∴W随m的增大而增大,且75<m≤78,
    ∴当m=78时,W最大,W最大值为1390,
    答:当m=78时,所获利润最大,最大利润为1390元.
    【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.
    23、(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为17.1米
    【解析】
    分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.
    详解:过P作PF⊥BD于F,作PE⊥AB于E,
    ∵斜坡的坡度i=5:1,
    设PF=5x,CF=1x,
    ∵四边形BFPE为矩形,
    ∴BF=PEPF=BE.
    在RT△ABC中,BC=90,
    tan∠ACB=,
    ∴AB=tan63.4°×BC≈2×90=180,
    ∴AE=AB-BE=AB-PF=180-5x,
    EP=BC+CF≈90+10x.
    在RT△AEP中,
    tan∠APE=,
    ∴x=,
    ∴PF=5x=.
    答:此人所在P的铅直高度约为14.3米.

    由(1)得CP=13x,
    ∴CP=13×37.1,BC+CP=90+37.1=17.1.
    答:从P到点B的路程约为17.1米.
    点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.
    24、(1)抛物线解析式为y=﹣x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).
    【解析】
    (1)利用待定系数法进行求解即可得;
    (2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN•AG+PN•BM=PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;
    (3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.
    【详解】
    (1)∵抛物线过点B(6,0)、C(﹣2,0),
    ∴设抛物线解析式为y=a(x﹣6)(x+2),
    将点A(0,6)代入,得:﹣12a=6,
    解得:a=﹣,
    所以抛物线解析式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6;
    (2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,

    设直线AB解析式为y=kx+b,
    将点A(0,6)、B(6,0)代入,得:

    解得:,
    则直线AB解析式为y=﹣x+6,
    设P(t,﹣t2+2t+6)其中0<t<6,
    则N(t,﹣t+6),
    ∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,
    ∴S△PAB=S△PAN+S△PBN
    =PN•AG+PN•BM
    =PN•(AG+BM)
    =PN•OB
    =×(﹣t2+3t)×6
    =﹣t2+9t
    =﹣(t﹣3)2+,
    ∴当t=3时,△PAB的面积有最大值;
    (3)△PDE为等腰直角三角形,
    则PE=PD,
    点P(m,-m2+2m+6),
    函数的对称轴为:x=2,则点E的横坐标为:4-m,
    则PE=|2m-4|,
    即-m2+2m+6+m-6=|2m-4|,
    解得:m=4或-2或5+或5-(舍去-2和5+)
    故点P的坐标为:(4,6)或(5-,3-5).
    【点睛】
    本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.

    相关试卷

    浙江省温州市2019年中考数学押题卷(含解析):

    这是一份浙江省温州市2019年中考数学押题卷(含解析),共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省温州市苍南县市级名校2022年中考数学最后一模试卷含解析:

    这是一份浙江省温州市苍南县市级名校2022年中考数学最后一模试卷含解析,共22页。试卷主要包含了下列调查中,最适合采用全面调查等内容,欢迎下载使用。

    2022年浙江省温州市苍南县中考数学仿真试卷含解析:

    这是一份2022年浙江省温州市苍南县中考数学仿真试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,-10-4的结果是,7的相反数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map