2021-2022学年浙江省东阳市六石初中等三中心校中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰( )
丙
丁
平均数
8
8
方差
1.2
1.8
A.甲 B.乙 C.丙 D.丁
2.若正多边形的一个内角是150°,则该正多边形的边数是( )
A.6 B.12 C.16 D.18
3.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是( )
A. B. C. D.
4.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )
A. B. C. D.
5.如图所示,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为( )
A.2 B. C. D.
6.如图,,,则的大小是
A. B. C. D.
7.已知am=2,an=3,则a3m+2n的值是( )
A.24 B.36 C.72 D.6
8.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?( )
A. B. C. D.
9.下列运算正确的是( )
A.(a2)4=a6 B.a2•a3=a6 C. D.
10.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是( )
A.2k-2 B.k-1 C.k D.k+1
11.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )
A.摸出的三个球中至少有一个球是黑球
B.摸出的三个球中至少有一个球是白球
C.摸出的三个球中至少有两个球是黑球
D.摸出的三个球中至少有两个球是白球
12.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )
A.90° B.135° C.270° D.315°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.
(1)OM的长等于_______;
(2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.
14.已知 x(x+1)=x+1,则x=________.
15.分解因式:x2﹣1=____.
16.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.
17.如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_____km.
18.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为______个.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的作法是这样的:如图:
(1)利用刻度尺在∠AOB的两边OA,OB上分别取OM=ON;
(2)利用两个三角板,分别过点M,N画OM,ON的垂线,交点为P;
(3)画射线OP.
则射线OP为∠AOB的平分线.请写出小林的画法的依据______.
20.(6分)请根据图中提供的信息,回答下列问题:
一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)
21.(6分)阅读
(1)阅读理解:
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
中线AD的取值范围是________;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.
22.(8分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:
(1)该班学生选择 观点的人数最多,共有 人,在扇形统计图中,该观点所在扇形区域的圆心角是 度.
(2)利用样本估计该校初三学生选择“中技”观点的人数.
(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).
23.(8分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
24.(10分)如图,为的直径,,为上一点,过点作的弦,设.
(1)若时,求、的度数各是多少?
(2)当时,是否存在正实数,使弦最短?如果存在,求出的值,如果不存在,说明理由;
(3)在(1)的条件下,且,求弦的长.
25.(10分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:
根据图中提供的信息,解答下列问题:
(1)补全频数分布直方图
(2)求扇形统计图中m的值和E组对应的圆心角度数
(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数
26.(12分)如图,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,点M为边BC上一动点,联结AM并延长交射线DC于点F,作∠FAE=45°交射线BC于点E、交边DCN于点N,联结EF.
(1)当CM:CB=1:4时,求CF的长.
(2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域.
(3)当△ABM∽△EFN时,求CM的长.
27.(12分)如图,在△ABC中,ABAC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.
(1)求证:AE为⊙O的切线;
(2)当BC=4,AC=6时,求⊙O的半径;
(3)在(2)的条件下,求线段BG的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
求出甲、乙的平均数、方差,再结合方差的意义即可判断.
【详解】
=(6+10+8+9+8+7+8+9+7+7)=8,
= [(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]
=×13
=1.3;
=(7+10+7+7+9+8+7+9+9+7)=8,
= [(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]
=×12
=1.2;
丙的平均数为8,方差为1.2,
丁的平均数为8,方差为1.8,
故4个人的平均数相同,方差丁最大.
故应该淘汰丁.
故选D.
【点睛】
本题考查方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式.
2、B
【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,
故选B.
3、B
【解析】
分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1.据此可画出图形.
详解:由俯视图及其小正方体的分布情况知,
该几何体的主视图为:
该几何体的左视图为:
故选:B.
点睛:此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
4、B
【解析】
试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.
考点:三视图.
5、C
【解析】
解:连接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故选C.
点睛:本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.
6、D
【解析】
依据,即可得到,再根据,即可得到.
【详解】
解:如图,,
,
又,
,
故选:D.
【点睛】
本题主要考查了平行线的性质,两直线平行,同位角相等.
7、C
【解析】
试题解析:∵am=2,an=3,
∴a3m+2n
=a3m•a2n
=(am)3•(an)2
=23×32
=8×9
=1.
故选C.
8、C
【解析】
分析:求出扇形的圆心角以及半径即可解决问题;
详解:∵∠A=60°,∠B=100°,
∴∠C=180°﹣60°﹣100°=20°,
∵DE=DC,
∴∠C=∠DEC=20°,
∴∠BDE=∠C+∠DEC=40°,
∴S扇形DBE=.
故选C.
点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.
9、C
【解析】
根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.
【详解】
A、原式=a8,所以A选项错误;
B、原式=a5,所以B选项错误;
C、原式= ,所以C选项正确;
D、与不能合并,所以D选项错误.
故选:C.
【点睛】
本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.
10、A
【解析】
先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.
【详解】
∵0<k<1,
∴k-1<0,
∴此函数是减函数,
∵1≤x≤1,
∴当x=1时,y最小=1(k-1)+1=1k-1.
故选A.
【点睛】
本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.
11、A
【解析】
根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.
【详解】
A、是必然事件;
B、是随机事件,选项错误;
C、是随机事件,选项错误;
D、是随机事件,选项错误.
故选A.
12、C
【解析】
根据四边形的内角和与直角三角形中两个锐角关系即可求解.
【详解】
解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,
∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.
故选:C.
【点睛】
此题主要考查角度的求解,解题的关键是熟知四边形的内角和为360°.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、(1)4;(2)见解析;
【解析】
解:(1)由勾股定理可得OM的长度
(2)取格点 F , E, 连接 EF , 得到点 N ,取格点S, T, 连接ST, 得到点R, 连接NR交OM于P,则点P即为所求。
【详解】
(1)OM==4;
故答案为4.
(2)以点O为原点建立直角坐标系,则A(1,0),B(4,0),设P(a,a),(0≤a≤4),
∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,
∴PA2+PB2=4(a﹣)2+,
∵0≤a≤4,
∴当a=时,PA2+PB2 取得最小值,
综上,需作出点P满足线段OP的长=;
取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR交OM于P,
则点P即为所求.
【点睛】(1) 根据勾股定理即可得到结论;
(2) 取格点F, E, 连接EF, 得到点N, 取格点S, T,连接ST, 得到点R, 连接NR即可得到结果.
14、1或-1
【解析】
方程可化为:
,
∴或,
∴或.
故答案为1或-1.
15、(x+1)(x﹣1).
【解析】
试题解析:x2﹣1=(x+1)(x﹣1).
考点:因式分解﹣运用公式法.
16、2.
【解析】
设第n层有an个三角形(n为正整数),根据前几层三角形个数的变化,即可得出变化规律“an=2n﹣2”,再代入n=2029即可求出结论.
【详解】
设第n层有an个三角形(n为正整数),
∵a2=2,a2=2+2=3,a3=2×2+2=5,a4=2×3+2=7,…,
∴an=2(n﹣2)+2=2n﹣2.
∴当n=2029时,a2029=2×2029﹣2=2.
故答案为2.
【点睛】
本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“an=2n﹣2”是解题的关键.
17、40
【解析】
首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题.
【详解】
解:在Rt△PAB中,∵∠APB=30°,
∴PB=2AB,
由题意BC=2AB,
∴PB=BC,
∴∠C=∠CPB,
∵∠ABP=∠C+∠CPB=60°,
∴∠C=30°,
∴PC=2PA,
∵PA=AB•tan60°,
∴PC=2×20×=40(km),
故答案为40.
【点睛】
本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.
18、9n+1.
【解析】
∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,
∴正方形和等边三角形的和=6+6=12=9+1;
∵第2个图由11个正方形和10个等边三角形组成,
∴正方形和等边三角形的和=11+10=21=9×2+1;
∵第1个图由16个正方形和14个等边三角形组成,
∴正方形和等边三角形的和=16+14=10=9×1+1,
…,
∴第n个图中正方形和等边三角形的个数之和=9n+1.
故答案为9n+1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线
【解析】
利用“HL”判断Rt△OPM≌Rt△OPN,从而得到∠POM=∠PON.
【详解】
有画法得OM=ON,∠OMP=∠ONP=90°,则可判定Rt△OPM≌Rt△OPN,
所以∠POM=∠PON,
即射线OP为∠AOB的平分线.
故答案为斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线.
【点睛】
本题考查了作图−基本作图,解题关键在于熟练掌握基本作图作一条线段等于已知线段.
20、(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.
【解析】
(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;
(2)计算出两商场得费用,比较即可得到结果.
【详解】
解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,
根据题意得:3x+4(48﹣x)=152,
解得:x=40,
则一个水瓶40元,一个水杯是8元;
(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n
乙商场所需费用为5×40+(n﹣5×2)×8=120+8n
则∵n>10,且n为整数,
∴160+6.4n﹣(120+8n)=40﹣1.6n
讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,
∴选择乙商场购买更合算.
当n>25时,40﹣1.6n<0,即 160+0.64n<120+8n,
∴选择甲商场购买更合算.
【点睛】
此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.
21、(1)2<AD<8;(2)证明见解析;(3)BE+DF=EF;理由见解析.
【解析】
试题分析:(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;
(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;
(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.
试题解析:(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:
∵AD是BC边上的中线,
∴BD=CD,
在△BDE和△CDA中,BD=CD,∠BDE=∠CDA,DE=AD,
∴△BDE≌△CDA(SAS),
∴BE=AC=6,
在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,
∴10﹣6<AE<10+6,即4<AE<16,
∴2<AD<8;
故答案为2<AD<8;
(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:
同(1)得:△BMD≌△CFD(SAS),
∴BM=CF,
∵DE⊥DF,DM=DF,
∴EM=EF,
在△BME中,由三角形的三边关系得:BE+BM>EM,
∴BE+CF>EF;
(3)解:BE+DF=EF;理由如下:
延长AB至点N,使BN=DF,连接CN,如图3所示:
∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,
∴∠NBC=∠D,
在△NBC和△FDC中,
BN=DF,∠NBC =∠D,BC=DC,
∴△NBC≌△FDC(SAS),
∴CN=CF,∠NCB=∠FCD,
∵∠BCD=140°,∠ECF=70°,
∴∠BCE+∠FCD=70°,
∴∠ECN=70°=∠ECF,
在△NCE和△FCE中,
CN=CF,∠ECN=∠ECF,CE=CE,
∴△NCE≌△FCE(SAS),
∴EN=EF,
∵BE+BN=EN,
∴BE+DF=EF.
考点:全等三角形的判定和性质;三角形的三边关系定理.
22、(4)A高中观点.4. 446;(4)456人;(4).
【解析】
试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460°乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;
(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;
(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解.
试题解析:(4)该班学生选择A高中观点的人数最多,共有60%×50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×460°=446°;
(4)∵800×44%=456(人),
∴估计该校初三学生选择“中技”观点的人数约是456人;
(4)该班选择“就业”观点的人数=50×(4-60%-44%)=50×8%=4(人),则该班有4位女同学和4位男生选择“就业”观点,
列表如下:
共有44种等可能的结果数,其中出现4女的情况共有4种.
所以恰好选到4位女同学的概率=.
考点:4.列表法与树状图法;4.用样本估计总体;4.扇形统计图.
23、(1)111,51;(2)11.
【解析】
(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为411m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;
(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.
【详解】
解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:
解得:x=51,
经检验x=51是原方程的解,
则甲工程队每天能完成绿化的面积是51×2=111(m2),
答:甲、乙两工程队每天能完成绿化的面积分别是111m2、51m2;
(2)设应安排甲队工作y天,根据题意得:
1.4y+×1.25≤8,
解得:y≥11,
答:至少应安排甲队工作11天.
24、(1), ;(2)见解析;(3).
【解析】
(1)连结AD、BD,利用m求出角的关系进而求出∠BCD、∠ACD的度数;
(2)连结,由所给关系式结合直径求出AP,OP,根据弦CD最短,求出∠BCD、∠ACD的度数,即可求出m的值.
(3)连结AD、BD,先求出AD,BD,AP,BP的长度,利用△APC∽△DPB和△CPB∽△APD得出比例关系式,得出比例关系式结合勾股定理求出CP,PD,即可求出CD.
【详解】
解:(1)如图1,连结、.
是的直径
,
又,
,
(2)如图2,连结.
,,
,则,
解得
要使最短,则于
,
,
,
故存在这样的值,且;
(3)如图3,连结、.
由(1)可得,
,,
,
,,
,
,
①,
②
同理
,
③,
由①得,由③得
,
在中,,
,
由②,得,
.
【点睛】
本题考查了相似三角形的判定与性质和锐角三角函数关系和圆周角定理等知识,掌握圆周角定理以及垂径定理是解题的关键.
25、略;m=40, 1.4°;870人.
【解析】
试题分析:根据A组的人数和比例得出总人数,然后得出D组的人数,补全条形统计图;根据C组的人数和总人数得出m的值,根据E组的人数求出E的百分比,然后计算圆心角的度数;根据D组合E组的百分数总和,估算出该校的每周的课外阅读时间不小于6小时的人数.
试题解析:(1)补全频数分布直方图,如图所示.
(2)∵10÷10%=100 ∴40÷100=40% ∴m=40
∵4÷100=4% ∴“E”组对应的圆心角度数=4%×360°=1.4°
(3)3000×(25%+4%)=870(人).
答:估计该校学生中每周的课外阅读时间不小于6小时的人数是870人.
考点:统计图.
26、 (1) CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.
【解析】
(1)如图1中,作AH⊥BC于H.首先证明四边形AHCD是正方形,求出BC、MC的长,利用平行线分线段成比例定理即可解决问题;
(2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得,推出AE2=EM•EB,由此构建函数关系式即可解决问题;
(3)如图2中,作AH⊥BC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG.想办法证明CM=CN,MN=DN+HM即可解决问题;
【详解】
解:(1)如图1中,作AH⊥BC于H.
∵CD⊥BC,AD∥BC,
∴∠BCD=∠D=∠AHC=90°,
∴四边形AHCD是矩形,
∵AD=DC=1,
∴四边形AHCD是正方形,
∴AH=CH=CD=1,
∵∠B=45°,
∴AH=BH=1,BC=2,
∵CM=BC=,CM∥AD,
∴=,
∴=,
∴CF=1.
(2)如图1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,
∵∠AEM=∠AEB,∠EAM=∠B,
∴△EAM∽△EBA,
∴=,
∴AE2=EM•EB,
∴1+(1+y)2=(x+y)(y+2),
∴y=,
∵2﹣2x≥0,
∴0≤x≤1.
(3)如图2中,作AH⊥BC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG.
则△ADN≌△AHG,△MAN≌△MAG,
∴MN=MG=HM+GH=HM+DN,
∵△ABM∽△EFN,
∴∠EFN=∠B=45°,
∴CF=CE,
∵四边形AHCD是正方形,
∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,
∴△AHE≌△ADF,
∴∠AEH=∠AFD,
∵∠AEH=∠DAN,∠AFD=∠HAM,
∴∠HAM=∠DAN,
∴△ADN≌△AHM,
∴DN=HM,设DN=HM=x,则MN=2x,CN=CM=x,
∴x+x=1,
∴x=﹣1,
∴CM=2﹣.
【点睛】
本题考查了正方形的判定与性质,平行线分线段成比例定理,勾股定理,相似三角形的判定与性质,全等三角形的判定与性质.熟练运用平行线分线段成比例定理是解(1)的关键;证明△EAM∽△EBA是解(2)的关键;综合运用全等三角形的判定与性质是解(3)的关键.
27、(1)证明见解析;(2);(3)1.
【解析】
(1)连接OM,如图1,先证明OM∥BC,再根据等腰三角形的性质判断AE⊥BC,则OM⊥AE,然后根据切线的判定定理得到AE为⊙O的切线;
(2)设⊙O的半径为r,利用等腰三角形的性质得到BE=CE=BC=2,再证明△AOM∽△ABE,则利用相似比得到,然后解关于r的方程即可;
(3)作OH⊥BE于H,如图,易得四边形OHEM为矩形,则HE=OM=,所以BH=BE-HE=,再根据垂径定理得到BH=HG=,所以BG=1.
【详解】
解:(1)证明:连接OM,如图1,
∵BM是∠ABC的平分线,
∴∠OBM=∠CBM,
∵OB=OM,
∴∠OBM=∠OMB,
∴∠CBM=∠OMB,
∴OM∥BC,
∵AB=AC,AE是∠BAC的平分线,
∴AE⊥BC,
∴OM⊥AE,
∴AE为⊙O的切线;
(2)解:设⊙O的半径为r,
∵AB=AC=6,AE是∠BAC的平分线,
∴BE=CE=BC=2,
∵OM∥BE,
∴△AOM∽△ABE,
∴,即,解得r=,
即设⊙O的半径为;
(3)解:作OH⊥BE于H,如图,
∵OM⊥EM,ME⊥BE,
∴四边形OHEM为矩形,
∴HE=OM=,
∴BH=BE﹣HE=2﹣=,
∵OH⊥BG,
∴BH=HG=,
∴BG=2BH=1.
浙江省杭州北干2021-2022学年中考联考数学试卷含解析: 这是一份浙江省杭州北干2021-2022学年中考联考数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,化简•a5所得的结果是等内容,欢迎下载使用。
2021-2022学年浙江省金华市东阳市八年级(下)期末数学试卷(含解析): 这是一份2021-2022学年浙江省金华市东阳市八年级(下)期末数学试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021-2022学年浙江省乐清市中考联考数学试卷含解析: 这是一份2021-2022学年浙江省乐清市中考联考数学试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算结果为a6的是等内容,欢迎下载使用。