年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    贵州省贵阳市2020-2022中考数学真题分类汇编-03解答题知识点分类

    立即下载
    加入资料篮
    贵州省贵阳市2020-2022中考数学真题分类汇编-03解答题知识点分类第1页
    贵州省贵阳市2020-2022中考数学真题分类汇编-03解答题知识点分类第2页
    贵州省贵阳市2020-2022中考数学真题分类汇编-03解答题知识点分类第3页
    还剩51页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    贵州省贵阳市2020-2022中考数学真题分类汇编-03解答题知识点分类

    展开

    这是一份贵州省贵阳市2020-2022中考数学真题分类汇编-03解答题知识点分类,共54页。试卷主要包含了两点,甲秀楼是贵阳市一张靓丽的名片等内容,欢迎下载使用。
    贵州省贵阳市2020-2022中考数学真题分类汇编-03解答题知识点分类
    一.完全平方公式
    1.(2021•贵阳)(1)有三个不等式2x+3<﹣1,﹣5x>15,3(x﹣1)>6,请在其中任选两个不等式,组成一个不等式组,并求出它的解集;
    (2)小红在计算a(1+a)﹣(a﹣1)2时,解答过程如下:
    a(1+a)﹣(a﹣1)2
    =a+a2﹣(a2﹣1)……第一步
    =a+a2﹣a2﹣1……第二步
    =a﹣1……第三步
    小红的解答从第    步开始出错,请写出正确的解答过程.
    二.解一元二次方程-因式分解法
    2.(2022•贵阳)(1)a,b两个实数在数轴上的对应点如图所示.
    用“<”或“>”填空:a   b,ab   0;
    (2)在初中阶段我们已经学习了一元二次方程的三种解法;他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.
    ①x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.

    三.分式方程的应用
    3.(2022•贵阳)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?
    四.一次函数的应用
    4.(2021•贵阳)为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如表:
    产品
    展板
    宣传册
    横幅
    制作一件产品所需时间(小时)
    1


    制作一件产品所获利润(元)
    20
    3
    10
    (1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;
    (2)若广告公司所获利润为700元,且三种产品均有制作,求制作三种产品总量的最小值.
    5.(2020•贵阳)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生 绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:

    (1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;
    (2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?
    五.反比例函数与一次函数的交点问题
    6.(2022•贵阳)一次函数y=﹣x﹣3的图象与反比例函数y=的图象相交于A(﹣4,m),B(n,﹣4)两点.
    (1)求这个反比例函数的表达式;
    (2)根据图象写出使一次函数值小于反比例函数值的x的取值范围.

    7.(2021•贵阳)如图,一次函数y=kx﹣2k(k≠0)的图象与反比例函数y=(m﹣1≠0)的图象交于点C,与x轴交于点A,过点C作CB⊥y轴,垂足为B,若S△ABC=3.
    (1)求点A的坐标及m的值;
    (2)若AB=2,求一次函数的表达式.

    8.(2020•贵阳)如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.
    (1)求反比例函数的表达式;
    (2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;
    (3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.

    六.二次函数的应用
    9.(2021•贵阳)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B到水面的距离是4m.
    (1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;
    (2)一只宽为1.2m的打捞船径直向桥驶来,当船驶到桥拱下方且距O点0.4m时,桥下水位刚好在OA处,有一名身高1.68m的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).
    (3)如图③,桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0),该抛物线在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m>0)个单位长度,平移后的函数图象在8≤x≤9时,y的值随x值的增大而减小,结合函数图象,求m的取值范围.

    10.(2020•贵阳)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)
    时间x(分钟)
    0
    1
    2
    3
    4
    5
    6
    7
    8
    9
    9~15
    人数y(人)
    0
    170
    320
    450
    560
    650
    720
    770
    800
    810
    810
    (1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;
    (2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?
    (3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?
    七.二次函数综合题
    11.(2022•贵阳)已知二次函数y=ax2+4ax+b.
    (1)求二次函数图象的顶点坐标(用含a,b的代数式表示);
    (2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,AB=6,且图象过(1,c),(3,d),(﹣1,e),(﹣3,f)四点,判断c,d,e,f的大小,并说明理由;
    (3)点M(m,n)是二次函数图象上的一个动点,当﹣2≤m≤1时,n的取值范围是﹣1≤n≤1,求二次函数的表达式.

    八.矩形的性质
    12.(2021•贵阳)如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.
    (1)求证:△ABN≌△MAD;
    (2)若AD=2,AN=4,求四边形BCMN的面积.

    九.正方形的性质
    13.(2022•贵阳)如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.
    (1)求证:△ABE≌△FMN;
    (2)若AB=8,AE=6,求ON的长.

    一十.四边形综合题
    14.(2022•贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.如图,在▱ABCD中,AN为BC边上的高,=m,点M在AD边上,且BA=BM,点E是线段AM上任意一点,连接BE,将△ABE沿BE翻折得△FBE.
    (1)问题解决:如图①,当∠BAD=60°,将△ABE沿BE翻折后,使点F与点M重合,则=   ;
    (2)问题探究:
    如图②,当∠BAD=45°,将△ABE沿BE翻折后,使EF∥BM,求∠ABE的度数,并求出此时m的最小值;
    (3)拓展延伸:
    当∠BAD=30°,将△ABE沿BE翻折后,若EF⊥AD,且AE=MD,根据题意在备用图中画出图形,并求出m的值.

    15.(2021•贵阳)(1)阅读理解
    我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.
    根据“赵爽弦图”写出勾股定理和推理过程;
    (2)问题解决
    勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形ACDE的中心O,作FG⊥HP,将它分成4份,所分成的四部分和以BC为边的正方形恰好能拼成以AB为边的正方形.若AC=12,BC=5,求EF的值;
    (3)拓展探究
    如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形N的边长为定值n,小正方形A,B,C,D的边长分别为a,b,c,d.
    已知∠1=∠2=∠3=α,当角α(0°<α<90°)变化时,探究b与c的关系式,并写出该关系式及解答过程(b与c的关系式用含n的式子表示).

    16.(2020•贵阳)如图,四边形ABCD是正方形,点O为对角线AC的中点.
    (1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是    ,位置关系是    ;
    (2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;
    (3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.

    一十一.扇形面积的计算
    17.(2021•贵阳)如图,在⊙O中,AC为⊙O的直径,AB为⊙O的弦,点E是的中点,过点E作AB的垂线,交AB于点M,交⊙O于点N,分别连接EB,CN.
    (1)EM与BE的数量关系是    ;
    (2)求证:=;
    (3)若AM=,MB=1,求阴影部分图形的面积.

    一十二.圆的综合题
    18.(2022•贵阳)如图,AB为⊙O的直径,CD是⊙O的切线,C为切点,连接BC.ED垂直平分OB,垂足为E,且交于点F,交BC于点P,连接BF,CF.
    (1)求证:∠DCP=∠DPC;
    (2)当BC平分∠ABF时,求证:CF∥AB;
    (3)在(2)的条件下,OB=2,求阴影部分的面积.

    一十三.作图—应用与设计作图
    19.(2020•贵阳)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
    (1)在图①中,画一个直角三角形,使它的三边长都是有理数;
    (2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;
    (3)在图③中,画一个直角三角形,使它的三边长都是无理数.

    一十四.相似三角形的判定与性质
    20.(2020•贵阳)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.
    (1)求证:四边形AEFD是平行四边形;
    (2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.

    21.(2020•贵阳)如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.
    (1)求证:AD=CD;
    (2)若AB=4,BF=5,求sin∠BDC的值.

    一十五.解直角三角形的应用-仰角俯角问题
    22.(2022•贵阳)交通安全心系千万家,高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF=7m,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).
    (1)求A,B两点之间的距离(结果精确到1m);
    (2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.
    (参考数据:≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)

    23.(2021•贵阳)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C两点之间的距离.如图所示,小星站在广场的B处遥控无人机,无人机在A处距离地面的飞行高度是41.6m,此时从无人机测得广场C处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE=1.6m,EA=50m(点A,E,B,C在同一平面内).
    (1)求仰角α的正弦值;
    (2)求B,C两点之间的距离(结果精确到1m).
    (sin63°≈0.89,cos63°≈0.45,tan63°≈1.96,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)

    24.(2020•贵阳)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)
    (1)求屋顶到横梁的距离AG;
    (2)求房屋的高AB(结果精确到1m).

    一十六.扇形统计图
    25.(2020•贵阳)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:
    部分初三学生每天听空中黔课时间的人数统计表
    时间/h
    1.5
    2
    2.5
    3
    3.5
    4
    人数/人
    2
    6
    6
    10
    m
    4
    (1)本次共调查的学生人数为   ,在表格中,m=   ;
    (2)统计的这组数据中,每天听空中黔课时间的中位数是   ,众数是   ;
    (3)请就疫情期间如何学习的问题写出一条你的看法.

    一十七.条形统计图
    26.(2021•贵阳)2020年我国进行了第七次全国人口普查,小星要了解我省城镇及乡村人口变化情况,根据贵州省历次人口普查结果,绘制了如下的统计图表.请利用统计图表提供的信息回答下列问题:

    贵州省历次人口普查城镇人口统计表
    年份
    1953
    1964
    1982
    1990
    2000
    2010
    2020
    城镇人口(万人)
    110
    204
    540
    635
    845
    1175
    2050
    城镇化率
    7%
    12%
    19%
    20%
    24%
    a
    53%
    (1)这七次人口普查乡村人口数的中位数是    万人;
    (2)城镇化率是一个国家或地区城镇人口占其总人口的百分率,是衡量城镇化水平的一个指标.根据统计图表提供的信息,我省2010年的城镇化率a是    (结果精确到1%);假设未来几年我省城乡总人口数与2020年相同,城镇化率要达到60%,则需从乡村迁入城镇的人口数量是    万人(结果保留整数);
    (3)根据贵州省历次人口普查统计图表,用一句话描述我省城镇化的趋势.
    一十八.折线统计图
    27.(2022•贵阳)小星想了解全国2019年至2021年货物进出口总额变化情况,他根据国家统计局2022年发布的相关信息,绘制了如下的统计图,请利用统计图中提供的信息回答下列问题:

    (1)为了更好的表现出货物进出口额的变化趋势,你认为应选择    统计图更好(填“条形”或“折线”);
    (2)货物进出口差额是衡量国家经济的重要指标,货物出口总额超过货物进口总额的差额称为货物进出口顺差,2021年我国货物进出口顺差是    万亿元;
    (3)写出一条关于我国货物进出口总额变化趋势的信息.
    一十九.列表法与树状图法
    28.(2020•贵阳)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.
    (1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;
    (2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.

    参考答案与试题解析
    一.完全平方公式
    1.(2021•贵阳)(1)有三个不等式2x+3<﹣1,﹣5x>15,3(x﹣1)>6,请在其中任选两个不等式,组成一个不等式组,并求出它的解集;
    (2)小红在计算a(1+a)﹣(a﹣1)2时,解答过程如下:
    a(1+a)﹣(a﹣1)2
    =a+a2﹣(a2﹣1)……第一步
    =a+a2﹣a2﹣1……第二步
    =a﹣1……第三步
    小红的解答从第  一 步开始出错,请写出正确的解答过程.
    【解答】(1)解:第一种组合:,
    解不等式①,得x<﹣2,
    解不等式②,得x<﹣3
    ∴原不等式组的解集是x<﹣3;

    第二种组合:,
    解不等式①,得x<﹣2,
    解不等式②,得x>3,
    ∴原不等式组无解;

    第三种组合:,
    解不等式①,得x<﹣3,
    解不等式②,得x>3,
    ∴原不等式组无解;
    (任选其中一种组合即可);
    (2)一,
    解:a(1+a)﹣(a﹣1)2
    =a+a2﹣(a2﹣2a+1)
    =a+a2﹣a2+2a﹣1
    =3a﹣1.
    故答案为一.
    二.解一元二次方程-因式分解法
    2.(2022•贵阳)(1)a,b两个实数在数轴上的对应点如图所示.
    用“<”或“>”填空:a < b,ab < 0;
    (2)在初中阶段我们已经学习了一元二次方程的三种解法;他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.
    ①x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.

    【解答】解:(1)由数轴上点的坐标知:a<0<b,
    ∴a<b,ab<0.
    故答案为:<,<.
    (2)①利用公式法:x2+2x﹣1=0,
    Δ=22﹣4×1×(﹣1)
    =4+4
    =8,
    ∴x=


    =﹣1±.
    ∴x1=﹣1+,x2=﹣1﹣;
    ②利用因式分解法:x2﹣3x=0,
    ∴x(x﹣3)=0.
    ∴x1=0,x2=3;
    ③利用配方法:x2﹣4x=4,
    两边都加上4,得x2﹣4x+4=8,
    ∴(x﹣2)2=8.
    ∴x﹣2=±2.
    ∴x1=2+2,x2=2﹣2;
    ④利用因式分解法:x2﹣4=0,
    ∴(x+2)(x﹣2)=0.
    ∴x1=﹣2,x2=2.
    三.分式方程的应用
    3.(2022•贵阳)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?
    【解答】解:设每辆小货车的货运量是x吨,则每辆大货车的货运量是(x+4)吨,
    依题意得:=,
    解得:x=12,
    经检验,x=12是原方程的解,且符合题意,
    ∴x+4=12+4=16.
    答:每辆大货车的货运量是16吨,每辆小货车的货运量是12吨.
    四.一次函数的应用
    4.(2021•贵阳)为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如表:
    产品
    展板
    宣传册
    横幅
    制作一件产品所需时间(小时)
    1


    制作一件产品所获利润(元)
    20
    3
    10
    (1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;
    (2)若广告公司所获利润为700元,且三种产品均有制作,求制作三种产品总量的最小值.
    【解答】解:(1)设制作展板数量为x件,横幅数量为y件,则宣传册数量为5x件,
    由题意得:,
    解得:,
    答:制作展板数量10件,宣传册数量50件,横幅数量10件;
    (2)设制作三种产品总量为w件,展板数量m件,则宣传册数量5m件,横幅数量(w﹣6m)件,
    由题意得:20m+3×5m+10(w﹣6m)=700,
    解得:w=m+70,
    ∵,
    解得:0<m<20,
    ∵w,m是整数,
    ∴m的最小值为2,
    ∴w是m的一次函数,
    ∵k=,
    ∴w随m的增加而增加,
    ∵三种产品均有制作,且w,m均为正整数,
    ∴当m=2时,w有最小值,则wmin=75,
    答:制作三种产品总量的最小值为75件.
    5.(2020•贵阳)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生 绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:

    (1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;
    (2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?
    【解答】解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据题意,得:
    6x+10(100﹣x)=1300﹣378,
    解得x=19.5,
    因为钢笔的数量不可能是小数,所以学习委员搞错了;

    (2)设笔记本的单价为a元,根据题意,得:
    6x+10(100﹣x)+a=1300﹣378,
    整理,得:x=,
    因为0<a<10,x随a的增大而增大,所以19.5<x<22,
    ∵x取整数,
    ∴x=20,21.
    当x=20时,a=4×20﹣78=2;
    当x=21时,a=4×21﹣78=6,
    所以笔记本的单价可能是2元或6元.
    五.反比例函数与一次函数的交点问题
    6.(2022•贵阳)一次函数y=﹣x﹣3的图象与反比例函数y=的图象相交于A(﹣4,m),B(n,﹣4)两点.
    (1)求这个反比例函数的表达式;
    (2)根据图象写出使一次函数值小于反比例函数值的x的取值范围.

    【解答】解:(1)∵一次函数y=﹣x﹣3过点A(﹣4,m),
    ∴m=﹣(﹣4)﹣3=1.
    ∴点A的坐标为(﹣4,1).
    ∵反比例函数y=的图象过点A,
    ∴k=xy=﹣4×1=﹣4.
    ∴反比例函数的表达式为y=﹣.
    (2)∵反比例函数y=﹣过点B(n,﹣4).
    ∴﹣4=﹣,解得n=1.
    ∵一次函数值小于反比例函数值,
    ∴一次函数图象在反比例函数图象的下方.
    ∴在y轴左侧,一次函数值小于反比例函数值x的取值范围为:﹣4<x<0;
    在第四象限内,一次函数值小于反比例函数值x的取值范围为:x>1.
    ∴一次函数值小于反比例函数值的x取值范围为:﹣4<x<0或x>1.
    7.(2021•贵阳)如图,一次函数y=kx﹣2k(k≠0)的图象与反比例函数y=(m﹣1≠0)的图象交于点C,与x轴交于点A,过点C作CB⊥y轴,垂足为B,若S△ABC=3.
    (1)求点A的坐标及m的值;
    (2)若AB=2,求一次函数的表达式.

    【解答】解:(1)令y=0,则kx﹣2k=0,
    ∴x=2,
    ∴A(2,0),
    设C(a,b),
    ∵CB⊥y轴,
    ∴B(0,b),
    ∴BC=﹣a,
    ∵S△ABC=3,
    ∴,
    ∴ab=﹣6,
    ∴m﹣1=ab=﹣6,
    ∴m=﹣5,
    即A(2,0),m=﹣5;
    (2)在Rt△AOB中,AB2=OA2+OB2,
    ∵,
    ∴b2+4=8,
    ∴b2=4,
    ∴b=±2,
    ∵b>0,
    ∴b=2,
    ∴a=﹣3,
    ∴C(﹣3,2),
    将C(﹣3,2)代入到直线解析式中得,
    ∴一次函数的表达式为.
    8.(2020•贵阳)如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.
    (1)求反比例函数的表达式;
    (2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;
    (3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.

    【解答】解:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),
    将(2,3)代入反比例函数表达式并解得:k=2×3=6,
    故反比例函数表达式为:y=①;

    (2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,
    联立①②并解得:,
    故交点坐标为(﹣2,﹣3)和(3,2);

    (3)设一次函数的表达式为:y=kx+5③,
    联立①③并整理得:kx2+5x﹣6=0,
    ∵两个函数没有公共点,故△=25+24k<0,解得:k<﹣,
    故可以取k=﹣2(答案不唯一),
    故一次函数表达式为:y=﹣2x+5(答案不唯一).
    六.二次函数的应用
    9.(2021•贵阳)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B到水面的距离是4m.
    (1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;
    (2)一只宽为1.2m的打捞船径直向桥驶来,当船驶到桥拱下方且距O点0.4m时,桥下水位刚好在OA处,有一名身高1.68m的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).
    (3)如图③,桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0),该抛物线在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m>0)个单位长度,平移后的函数图象在8≤x≤9时,y的值随x值的增大而减小,结合函数图象,求m的取值范围.

    【解答】解:(1)如图②,由题意得:水面宽OA是8m,桥拱顶点B到水面的距离是4m,
    结合函数图象可知,顶点B (4,4),点O (0,0),
    设二次函数的表达式为y=a(x﹣4)2+4,
    将点O (0,0)代入函数表达式,
    解得:a=﹣,
    ∴二次函数的表达式为y=﹣(x﹣4)2+4,
    即y=﹣x2+2x (0≤x≤8);
    (2)工人不会碰到头,理由如下:
    ∵打捞船距O点0.4m,打捞船宽1.2m,工人直立在打捞船中间,
    由题意得:工人距O点距离为0.4+×1.2=1,
    ∴将x=1代入y=﹣x2+2x,
    解得:y==1.75,
    ∵1.75m>1.68m,
    ∴此时工人不会碰到头;
    (3)抛物线y=﹣x2+2x在x轴上方的部分与桥拱在平静水面中的倒影关于x轴成轴对称.
    如图所示,

    新函数图象的对称轴也是直线x=4,
    此时,当0≤x≤4或x≥8时,y的值随x值的增大而减小,
    将新函数图象向右平移m个单位长度,可得平移后的函数图象,
    如图所示,

    ∵平移不改变图形形状和大小,
    ∴平移后函数图象的对称轴是直线x=4+m,
    ∴当m≤x≤4+m或x≥8+m时,y的值随x值的增大而减小,
    ∴当8≤x≤9时,y的值随x值的增大而减小,结合函数图象,
    得m的取值范围是:
    ①m≤8且4+m≥9,得5≤m≤8,
    ②8+m≤8,得m≤0,
    由题意知m>0,
    ∴m≤0不符合题意,舍去,
    综上所述,m的取值范围是5≤m≤8.
    10.(2020•贵阳)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)
    时间x(分钟)
    0
    1
    2
    3
    4
    5
    6
    7
    8
    9
    9~15
    人数y(人)
    0
    170
    320
    450
    560
    650
    720
    770
    800
    810
    810
    (1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;
    (2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?
    (3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?
    【解答】解:(1)由表格中数据的变化趋势可知,
    ①当0≤x≤9时,y是x的二次函数,
    ∵当x=0时,y=0,
    ∴二次函数的关系式可设为:y=ax2+bx,
    由题意可得:,
    解得:,
    ∴二次函数关系式为:y=﹣10x2+180x,
    ②当9<x≤15时,y=810,
    ∴y与x之间的函数关系式为:y=;
    (2)设第x分钟时的排队人数为w人,
    由题意可得:w=y﹣40x=,
    ①当0≤x≤9时,w=﹣10x2+140x=﹣10(x﹣7)2+490,
    ∴当x=7时,w的最大值=490,
    ②当9<x≤15时,w=810﹣40x,w随x的增大而减小,
    ∴210≤w<450,
    ∴排队人数最多时是490人,
    要全部考生都完成体温检测,根据题意得:810﹣40x=0,
    解得:x=20.25,
    答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;
    (3)设从一开始就应该增加m个检测点,由题意得:12×20(m+2)≥810,
    解得m≥,
    ∵m是整数,
    ∴m≥的最小整数是2,
    ∴一开始就应该至少增加2个检测点.
    七.二次函数综合题
    11.(2022•贵阳)已知二次函数y=ax2+4ax+b.
    (1)求二次函数图象的顶点坐标(用含a,b的代数式表示);
    (2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,AB=6,且图象过(1,c),(3,d),(﹣1,e),(﹣3,f)四点,判断c,d,e,f的大小,并说明理由;
    (3)点M(m,n)是二次函数图象上的一个动点,当﹣2≤m≤1时,n的取值范围是﹣1≤n≤1,求二次函数的表达式.

    【解答】解:(1)∵y=ax2+4ax+b=a(x+2)2﹣4a+b,
    ∴二次函数图象的顶点坐标为(﹣2,﹣4a+b).
    (2)由(1)得抛物线对称轴为直线x=﹣2,
    当a>0时,抛物线开口向上,
    ∵3﹣(﹣2)>1﹣(﹣2)>(﹣1)﹣(﹣2)=(﹣3)﹣(﹣2),
    ∴d>c>e=f.
    当a<0时,抛物线开口向下,
    ∵3﹣(﹣2)>1﹣(﹣2)>(﹣1)﹣(﹣2)=(﹣3)﹣(﹣2),
    ∴d<c<e=f.
    (3)当a>0时,抛物线开口向上,x>﹣2时,y随x增大而增大,
    ∴m=﹣2时,n=﹣1,m=1时,n=1,
    ∴,
    解得,
    ∴y=x2+x﹣.
    当a<0时,抛物线开口向下,x>﹣2时,y随x增大而减小,
    ∴m=﹣2时,n=1,m=1时,n=﹣1,
    ∴,
    解得.
    ∴y=﹣x2﹣x+.
    综上所述,y=x2+x﹣或y=﹣x2﹣x+.
    八.矩形的性质
    12.(2021•贵阳)如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.
    (1)求证:△ABN≌△MAD;
    (2)若AD=2,AN=4,求四边形BCMN的面积.

    【解答】(1)证明:在矩形ABCD中,∠D=90°,DC∥AB,
    ∴∠BAN=∠AMD,
    ∵BN⊥AM,
    ∴∠BNA=90°,
    在△ABN和△MAD中,

    ∴△ABN≌△MAD(AAS);
    (2)解:∵△ABN≌△MAD,
    ∴BN=AD,
    ∵AD=2,
    ∴BN=2,
    又∵AN=4,
    在Rt△ABN中,AB===2,
    ∴S矩形ABCD=2×2=4,S△ABN=S△MAD=×2×4=4,
    ∴S四边形BCMN=S矩形ABCD﹣S△ABN﹣S△MAD=4﹣8.
    九.正方形的性质
    13.(2022•贵阳)如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.
    (1)求证:△ABE≌△FMN;
    (2)若AB=8,AE=6,求ON的长.

    【解答】解:(1)∵四边形ABCD为正方形,
    ∴AB=AD,AB∥CD,
    又∵MF∥AD,
    ∴四边形AMFD为矩形,
    ∴AD=MF,
    ∵BE的垂直平分线交AB于点M,交CD于点N,垂足为O,
    ∴∠MFN=∠BAE=90°,∠FMN+∠BMO=∠BMO+MBO=90°,
    ∴∠FMN=∠MBO,
    在△ABE和△FMN中,

    ∴△ABE≌△FMN(ASA);
    (2)连接ME,
    ∵BE的垂直平分线交AB于点M,交CD于点N,垂足为O,
    ∴BM=EM,
    设BM=ME=x,
    ∴AM=8﹣x,
    在△AME中,x2=(8﹣x)2+62,
    ∴x=,
    ∴BM=,
    ∵∠MOB=∠A=90°,∠B是公共角,
    ∴△BOM∽△BAE,
    ∴OM:AE=BM:BE,
    ∵AB=8,AE=6,
    ∴BE==10,
    ∴OM:6=:10,
    ∴OM=,
    ∵△ABE≌△FMN,
    ∴NM=BE=10,
    ∴ON=MN﹣MO=.

    一十.四边形综合题
    14.(2022•贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.如图,在▱ABCD中,AN为BC边上的高,=m,点M在AD边上,且BA=BM,点E是线段AM上任意一点,连接BE,将△ABE沿BE翻折得△FBE.
    (1)问题解决:如图①,当∠BAD=60°,将△ABE沿BE翻折后,使点F与点M重合,则=  ;
    (2)问题探究:
    如图②,当∠BAD=45°,将△ABE沿BE翻折后,使EF∥BM,求∠ABE的度数,并求出此时m的最小值;
    (3)拓展延伸:
    当∠BAD=30°,将△ABE沿BE翻折后,若EF⊥AD,且AE=MD,根据题意在备用图中画出图形,并求出m的值.

    【解答】解:(1)∵BA=BM,∠BAD=60°∴△ABM是等边三角形,
    ∴AB=AM=BM,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠ABN=∠BAM=60°,
    ∵AN为BC边上的高,
    ∴==,
    故答案为:;
    (2)∵∠BAD=45°,BA=BM,
    ∴△AMB是等腰直角三角形,
    ∴∠MBC=∠AMB=45°,
    ∵EF∥BM,
    ∴∠FEM=∠AMB=45°,
    ∴∠AEB=∠FEB=(180°+45°)=112.5°,
    ∵AD∥NC,
    ∴∠BAE=∠ABN=45°,
    ∴∠ABE=180°﹣∠AEB﹣∠BAE=22.5°,
    ∵=m,△AMB是等腰直角三角形,AN为底边上的高,则AN=AM,
    ∵点M在AD边上,
    ∴当AD=AM时,m取得最小值,最小值为=2,
    (3)如图,连接FM,延长EF交NC于点G,

    ∵∠BAD=30°,则∠ABN=30°,
    设AN=a,则AB=2a,NB=a,
    ∵EF⊥AD,
    ∴∠AEB=∠FEB=(180°+90°)=135°,
    ∵∠EAB=∠BAD=30°,
    ∴∠ABE=15°,
    ∴∠ABF=30°,
    ∵AB=BM,∠BAD=30°,
    ∴∠ABM=120°,
    ∵∠MBC=∠AMB=30°,
    ∴∠FBM=90°,
    在Rt△FBM中,FB=AB=BM,
    ∴FM=FB=2a,
    ∴EG⊥GB,
    ∵∠EBG=∠ABE+∠ABN=45°,
    ∴GB=EG=a,
    ∵NB=a,
    ∴AE=EF=MD=(﹣1)a,
    在Rt△EFM中,EM==(+1)a,
    ∴AD=AE+EM+MD=2AE+EM=(3﹣1)a,
    ∴m==3﹣1或3+1.
    15.(2021•贵阳)(1)阅读理解
    我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.
    根据“赵爽弦图”写出勾股定理和推理过程;
    (2)问题解决
    勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形ACDE的中心O,作FG⊥HP,将它分成4份,所分成的四部分和以BC为边的正方形恰好能拼成以AB为边的正方形.若AC=12,BC=5,求EF的值;
    (3)拓展探究
    如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形N的边长为定值n,小正方形A,B,C,D的边长分别为a,b,c,d.
    已知∠1=∠2=∠3=α,当角α(0°<α<90°)变化时,探究b与c的关系式,并写出该关系式及解答过程(b与c的关系式用含n的式子表示).

    【解答】解:(1)a2+b2=c2(直角三角形两条直角边的平方和等于斜边的平方),证明如下:
    ∵如图①是由直角边长分别为a,b的四个全等的直角三角形与中间一个边长为(b﹣a)的小正方形拼成的一个边长为c的大正方形,
    ∴4△ADE的面积+正方形EFGH的面积=正方形ABCD的面积,
    即4×ab+(b﹣a)2=c2,
    整理得:a2+b2=c2;
    (2)由题意得:正方形ACDE被分成4个全等的四边形,
    设EF=a,FD=b,
    分两种情况:
    ①a>b时,
    ∴a+b=12,
    ∵正方形ABIJ是由正方形ACDE被分成的4个全等的四边形和正方形CBLM拼成,
    ∴E'F'=EF,KF'=FD,E'K=BC=5,
    ∵E'F'﹣KF'=E'K,
    ∴a﹣b=5,
    ∴,
    解得:a=,
    ∴EF=;
    ②a<b时,同①得:,
    解得:a=,
    ∴EF=;
    综上所述,EF为或;
    (3)c+b=n,理由如下:
    如图③所示:
    设正方形E的边长为e,正方形F的边长为f,
    ∵∠1=∠2=∠3=α,∠PMQ=∠D'OE'=∠B'C'A'=90°,
    ∴△PMQ∽△D'OE'∽△B'C'A',
    ∴=,=,
    即=,=,
    ∴e2=cn,f2=bn,
    在Rt△A'B'C'中,由勾股定理得:e2+f2=n2,
    ∴cn+bn=n2,
    ∴c+b=n.



    16.(2020•贵阳)如图,四边形ABCD是正方形,点O为对角线AC的中点.
    (1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是  PQ=BO ,位置关系是  PQ⊥BO ;
    (2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;
    (3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.

    【解答】解:(1)∵点O为对角线AC的中点,
    ∴BO⊥AC,BO=CO,
    ∵P为BC的中点,Q为BO的中点,
    ∴PQ∥OC,PQ=OC,
    ∴PQ⊥BO,PQ=BO;
    故答案为:PQ=BO,PQ⊥BO.
    (2)△PQB的形状是等腰直角三角形.理由如下:
    连接O'P并延长交BC于点F,

    ∵四边形ABCD是正方形,
    ∴AB=BC,∠ABC=90°,
    ∵将△AOB绕点A按顺时针方向旋转45°得到△AO'E,
    ∴△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,
    ∴∠O'EP=∠FCP,∠PO'E=∠PFC,
    又∵点P是CE的中点,
    ∴CP=EP,
    ∴△O'PE≌△FPC(AAS),
    ∴O'E=FC=O'A,O'P=FP,
    ∴AB﹣O'A=CB﹣FC,
    ∴BO'=BF,
    ∴△O'BF为等腰直角三角形.
    ∴BP⊥O'F,O'P=BP,
    ∴△BPO'也为等腰直角三角形.
    又∵点Q为O'B的中点,
    ∴PQ⊥O'B,且PQ=BQ,
    ∴△PQB的形状是等腰直角三角形;
    (3)延长O'E交BC边于点G,连接PG,O'P.

    ∵四边形ABCD是正方形,AC是对角线,
    ∴∠ECG=45°,
    由旋转得,四边形O'ABG是矩形,
    ∴O'G=AB=BC,∠EGC=90°,
    ∴△EGC为等腰直角三角形.
    ∵点P是CE的中点,
    ∴PC=PG=PE,∠CPG=90°,∠EGP=45°,
    ∴△O'GP≌△BCP(SAS),
    ∴∠O'PG=∠BPC,O'P=BP,
    ∴∠O'PG﹣∠GPB=∠BPC﹣∠GPB=90°,
    ∴∠O'PB=90°,
    ∴△O'PB为等腰直角三角形,
    ∵点Q是O'B的中点,
    ∴PQ=O'B=BQ,PQ⊥O'B,
    ∵AB=1,
    ∴O'A=,
    ∴O'B===,
    ∴BQ=.
    ∴S△PQB=BQ•PQ=×=.
    一十一.扇形面积的计算
    17.(2021•贵阳)如图,在⊙O中,AC为⊙O的直径,AB为⊙O的弦,点E是的中点,过点E作AB的垂线,交AB于点M,交⊙O于点N,分别连接EB,CN.
    (1)EM与BE的数量关系是  BE=EM ;
    (2)求证:=;
    (3)若AM=,MB=1,求阴影部分图形的面积.

    【解答】解:(1)∵AC为⊙O的直径,点E是的中点,
    ∴∠ABE=45°,
    ∵AB⊥EN,
    ∴△BME是等腰直角三角形,
    ∴BE=EM,
    故答案为BE=EM;

    (2)连接EO,
    ∵AC是⊙O的直径,E是的中点,
    ∴∠AOE=90°,
    ∴∠ABE=∠AOE=45°,
    ∵EN⊥AB,垂足为点M,
    ∴∠EMB=90°
    ∴∠ABE=∠BEN=45°,
    ∴=,
    ∵点E是的中点,
    ∴=,
    ∴=,
    ∴﹣=﹣,
    ∴=;

    (3)连接AE,OB,ON,
    ∵EN⊥AB,垂足为点M,
    ∴∠AME=∠EMB=90°,
    ∵BM=1,由(2)得∠ABE=∠BEN=45°,
    ∴EM=BM=1,
    又∵BE=EM,
    ∴BE=,
    ∵在Rt△AEM中,EM=1,AM=,
    ∴tan∠EAB==,
    ∴∠EAB=30°,
    ∵∠EAB=∠EOB,
    ∴∠EOB=60°,
    又∵OE=OB,
    ∴△EOB是等边三角形,
    ∴OE=BE=,
    又∵=,
    ∴BE=CN,
    ∴△OEB≌△OCN(SSS),
    ∴CN=BE=
    又∵S扇形OCN==,S△OCN=CN×CN=×=,
    ∴S阴影=S扇形OCN﹣S△OCN=﹣.

    一十二.圆的综合题
    18.(2022•贵阳)如图,AB为⊙O的直径,CD是⊙O的切线,C为切点,连接BC.ED垂直平分OB,垂足为E,且交于点F,交BC于点P,连接BF,CF.
    (1)求证:∠DCP=∠DPC;
    (2)当BC平分∠ABF时,求证:CF∥AB;
    (3)在(2)的条件下,OB=2,求阴影部分的面积.

    【解答】(1)证明:连接OC,如图:

    ∵CD是⊙O的切线,C为切点,
    ∴∠DCO=90°,即∠OCB+∠DCP=90°,
    ∵DE⊥OB,
    ∴∠DEB=90°,
    ∴∠OBC+∠BPE=90°,
    ∵OB=OC,
    ∴∠OCB=∠OBC,
    ∴∠DCP=∠BPE,
    ∵∠BPE=∠DPC,
    ∴∠DCP=∠DPC;
    (2)证明:连接OF,如图:

    ∵ED垂直平分OB,
    ∴OF=BF,
    ∵OF=OB,
    ∴BF=OF=OB,
    ∴△BOF是等边三角形,
    ∴∠FOB=∠ABF=60°,
    ∴∠FCB=∠FOB=30°,
    ∵BC平分∠ABF,
    ∴∠ABC=∠ABF=30°,
    ∴∠FCB=∠ABC,
    ∴CF∥AB;
    (3)解:连接OF、OC,如图:

    由(2)知,∠ABC=∠CBF=30°,
    ∴∠COF=2∠CBF=60°,
    ∵OB=2,即⊙O半径为2,
    ∴S扇形COF==,
    ∵OC=OF,∠COF=60°,
    ∴△COF是等边三角形,
    ∴CF=OF=OB=2,
    ∵ED垂直平分OB,
    ∴OE=BE=OB=1,∠FEB=90°,
    在Rt△FEB中,
    EF===,
    ∴S△COF=CF•EF=×2×=,
    ∴S阴影=S扇形COF﹣S△COF=﹣,
    答:阴影部分的面积为﹣.
    一十三.作图—应用与设计作图
    19.(2020•贵阳)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
    (1)在图①中,画一个直角三角形,使它的三边长都是有理数;
    (2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;
    (3)在图③中,画一个直角三角形,使它的三边长都是无理数.

    【解答】解:(1)如图①中,△ABC即为所求.
    (2)如图②中,△ABC即为所求.
    (3)△ABC即为所求.

    一十四.相似三角形的判定与性质
    20.(2020•贵阳)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.
    (1)求证:四边形AEFD是平行四边形;
    (2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.

    【解答】(1)证明:∵∠四边形ABCD是矩形,
    ∴AD∥BC,AD=BC,
    ∵BE=CF,
    ∴BE+EC=EC+CF,即BC=EF,
    ∴AD=EF,
    ∴四边形AEFD是平行四边形;
    (2)解:连接DE,如图,
    ∵四边形ABCD是矩形,
    ∴∠B=90°,
    在Rt△ABE中,AE==2,
    ∵AD∥BC,
    ∴∠AEB=∠EAD,
    ∵∠B=∠AED=90°,
    ∴△ABE∽△DEA,
    ∴AE:AD=BE:AE,
    ∴AD==10,
    ∵AB=4,
    ∴四边形AEFD的面积=AB×AD=4×10=40.

    21.(2020•贵阳)如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.
    (1)求证:AD=CD;
    (2)若AB=4,BF=5,求sin∠BDC的值.

    【解答】解:(1)证明:∵∠CAD=∠ABD,
    又∵∠ABD=∠ACD,
    ∴∠ACD=∠CAD,
    ∴AD=CD;

    (2)∵AF是⊙O的切线,
    ∴∠FAB=90°,
    ∵AB是⊙O的直径,
    ∴∠ACB=∠ADB=∠ADF=90°,
    ∴∠ABD+∠BAD=∠BAD+∠FAD=90°,
    ∴∠ABD=∠FAD,
    ∵∠ABD=∠CAD,
    ∴∠FAD=∠EAD,
    ∵AD=AD,
    ∴△ADF≌△ADE(ASA),
    ∴AF=AE,DF=DE,
    在Rt△ADE中,AB=4,BF=5,
    ∴AF=,
    ∴AE=AF=3,
    ∵,
    ∴,
    ∴DE=,
    ∴BE=BF﹣2DE=,
    ∵∠AED=∠BEC,∠ADE=∠BCE=90°,
    ∴△BEC∽△AED,
    ∴,
    ∴,
    ∴,
    ∵∠BDC=∠BAC,
    在Rt△ACB中,∠ACB=90°
    ∴.
    法二、如图,连接OD,AC交于点H,

    ∵AD=CD,
    ∴OD⊥AC,
    设OH为x,则HD为2﹣x,
    ∵AF与⊙O相切,
    ∴∠BAF=90°,
    ∵AB=4,BF=5,
    ∴AF=3,OA=2,
    ∵AD⊥BF,
    ∴AD==,
    ∴OA2﹣OH2=AD2﹣HD2,即22﹣x2=()2﹣(2﹣x)2,
    解得x=,
    ∴sin∠BDC==.

    一十五.解直角三角形的应用-仰角俯角问题
    22.(2022•贵阳)交通安全心系千万家,高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF=7m,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).
    (1)求A,B两点之间的距离(结果精确到1m);
    (2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.
    (参考数据:≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)

    【解答】解:(1)由题意得:
    ∠CAD=25°,∠EBF=60°,CE=DF=750米,
    在Rt△ACD中,CD=7米,
    ∴AD=≈=14(米),
    在Rt△BEF中,EF=7米,
    ∴BF==≈4.1(米),
    ∴AB=AD+DF﹣BF=14+750﹣4.1≈760(米),
    ∴A,B两点之间的距离约为760米;
    (2)小汽车从点A行驶到点B没有超速,
    理由:由题意得:
    760÷38=20米/秒,
    ∵20米/秒<22米/秒,
    ∴小汽车从点A行驶到点B没有超速.
    23.(2021•贵阳)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C两点之间的距离.如图所示,小星站在广场的B处遥控无人机,无人机在A处距离地面的飞行高度是41.6m,此时从无人机测得广场C处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE=1.6m,EA=50m(点A,E,B,C在同一平面内).
    (1)求仰角α的正弦值;
    (2)求B,C两点之间的距离(结果精确到1m).
    (sin63°≈0.89,cos63°≈0.45,tan63°≈1.96,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)

    【解答】解:(1)如图,过A点作AD⊥BC于D,过E点作EF⊥AD于F,
    ∵∠EBD=∠FDB=∠DFE=90°,
    ∴四边形BDFE为矩形,
    ∴EF=BD,DF=BE=1.6m,
    ∴AF=AD﹣DF=41.6﹣1.6=40(m),
    在Rt△AEF中,sin∠AEF===,
    即sinα=.
    答:仰角α的正弦值为;
    (2)在Rt△AEF中,EF===30(m),
    在Rt△ACD中,∠ACD=63°,AD=41.6m,
    ∵tan∠ACD=,
    ∴CD==≈21.22(m),
    ∴BC=BD+CD=30+21.22≈51(m).
    答:B,C两点之间的距离约为51m.

    24.(2020•贵阳)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)
    (1)求屋顶到横梁的距离AG;
    (2)求房屋的高AB(结果精确到1m).

    【解答】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF∥BC,
    ∴AG⊥EF,EG=EF,∠AEG=∠ACB=35°,
    在Rt△AGE中,∠AGE=90°,∠AEG=35°,
    ∵tan∠AEG=tan35°=,EG=6,
    ∴AG=6×0.7=4.2(米);
    答:屋顶到横梁的距离AG约为4.2米;
    (2)过E作EH⊥CB于H,
    设EH=x,
    在Rt△EDH中,∠EHD=90°,∠EDH=60°,
    ∵tan∠EDH=,
    ∴DH=,
    在Rt△ECH中,∠EHC=90°,∠ECH=35°,
    ∵tan∠ECH=,
    ∴CH=,
    ∵CH﹣DH=CD=8,
    ∴﹣=8,
    解得:x≈9.52,
    ∴AB=AG+BG=13.72≈14(米),
    答:房屋的高AB约为14米.

    一十六.扇形统计图
    25.(2020•贵阳)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:
    部分初三学生每天听空中黔课时间的人数统计表
    时间/h
    1.5
    2
    2.5
    3
    3.5
    4
    人数/人
    2
    6
    6
    10
    m
    4
    (1)本次共调查的学生人数为 50 ,在表格中,m= 22 ;
    (2)统计的这组数据中,每天听空中黔课时间的中位数是 3.5h ,众数是 3.5h ;
    (3)请就疫情期间如何学习的问题写出一条你的看法.

    【解答】解:(1)本次共调查的学生人数为:6÷12%=50(人),
    m=50×44%=22,
    故答案为:50,22;

    (2)由题意得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,
    ∵第25个数和第26个数都是3.5h,
    ∴中位数是3.5h;
    ∵3.5h出现了22次,出现的次数最多,
    ∴众数是3.5h,
    故答案为:3.5h,3.5h;

    (3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).
    一十七.条形统计图
    26.(2021•贵阳)2020年我国进行了第七次全国人口普查,小星要了解我省城镇及乡村人口变化情况,根据贵州省历次人口普查结果,绘制了如下的统计图表.请利用统计图表提供的信息回答下列问题:

    贵州省历次人口普查城镇人口统计表
    年份
    1953
    1964
    1982
    1990
    2000
    2010
    2020
    城镇人口(万人)
    110
    204
    540
    635
    845
    1175
    2050
    城镇化率
    7%
    12%
    19%
    20%
    24%
    a
    53%
    (1)这七次人口普查乡村人口数的中位数是  2300 万人;
    (2)城镇化率是一个国家或地区城镇人口占其总人口的百分率,是衡量城镇化水平的一个指标.根据统计图表提供的信息,我省2010年的城镇化率a是  34% (结果精确到1%);假设未来几年我省城乡总人口数与2020年相同,城镇化率要达到60%,则需从乡村迁入城镇的人口数量是  271 万人(结果保留整数);
    (3)根据贵州省历次人口普查统计图表,用一句话描述我省城镇化的趋势.
    【解答】解:(1)这七次人口普查乡村人口数从小到大排列为:1391,1511,1818,2300,2315,2616,2680,
    ∴中位数是第四个数2300,
    故答案为:2300;
    (2)1175÷(2300+1175)×100%≈34%,
    (2050+1818)×60%﹣2050≈271(万人),
    故答案为:34%,271;
    (3)随着年份的增加,城镇化率越来越高.
    一十八.折线统计图
    27.(2022•贵阳)小星想了解全国2019年至2021年货物进出口总额变化情况,他根据国家统计局2022年发布的相关信息,绘制了如下的统计图,请利用统计图中提供的信息回答下列问题:

    (1)为了更好的表现出货物进出口额的变化趋势,你认为应选择  折线 统计图更好(填“条形”或“折线”);
    (2)货物进出口差额是衡量国家经济的重要指标,货物出口总额超过货物进口总额的差额称为货物进出口顺差,2021年我国货物进出口顺差是  4.36 万亿元;
    (3)写出一条关于我国货物进出口总额变化趋势的信息.
    【解答】解:(1)为了更好的表现出货物进出口额的变化趋势,你认为应选择折线统计图更好,
    故答案为:折线;
    (2)21.73﹣17.37=4.36(万亿元),
    即2021年我国货物进出口顺差是4.36万亿元;
    故答案为:4.36;
    (3)我国货物进出口总额增长速度都很快.(答案不唯一).
    一十九.列表法与树状图法
    28.(2020•贵阳)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.
    (1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;
    (2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.
    【解答】解:(1)把《消防知识手册》《辞海》《辞海》分别记为A、B、C,
    画树状图如图:

    共有6个等可能的结果,恰好抽到2张卡片都是《辞海》的结果有2个,
    ∴恰好抽到2张卡片都是《辞海》的概率为=;
    (2)设应添加x张《消防知识手册》卡片,
    由题意得:=,
    解得:x=4,
    经检验,x=4是原方程的解;
    答:应添加4张《消防知识手册》卡片.

    相关试卷

    山东省烟台市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类:

    这是一份山东省烟台市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类,共43页。试卷主要包含了先化简,再求值,÷,其中x=+1,y=﹣1,直播购物逐渐走进了人们的生活等内容,欢迎下载使用。

    贵州省贵阳市2020-2022中考数学真题分类汇编-01选择题知识点分类:

    这是一份贵州省贵阳市2020-2022中考数学真题分类汇编-01选择题知识点分类,共22页。

    贵州省遵义市2020-2022中考数学真题分类汇编-03解答题知识点分类:

    这是一份贵州省遵义市2020-2022中考数学真题分类汇编-03解答题知识点分类,共46页。试卷主要包含了计算,满足的函数图象如图所示,的“关联抛物线”为C2等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map