贵州省贵阳市2020-2022中考数学真题分类汇编-03解答题知识点分类
展开
这是一份贵州省贵阳市2020-2022中考数学真题分类汇编-03解答题知识点分类,共54页。试卷主要包含了两点,甲秀楼是贵阳市一张靓丽的名片等内容,欢迎下载使用。
贵州省贵阳市2020-2022中考数学真题分类汇编-03解答题知识点分类
一.完全平方公式
1.(2021•贵阳)(1)有三个不等式2x+3<﹣1,﹣5x>15,3(x﹣1)>6,请在其中任选两个不等式,组成一个不等式组,并求出它的解集;
(2)小红在计算a(1+a)﹣(a﹣1)2时,解答过程如下:
a(1+a)﹣(a﹣1)2
=a+a2﹣(a2﹣1)……第一步
=a+a2﹣a2﹣1……第二步
=a﹣1……第三步
小红的解答从第 步开始出错,请写出正确的解答过程.
二.解一元二次方程-因式分解法
2.(2022•贵阳)(1)a,b两个实数在数轴上的对应点如图所示.
用“<”或“>”填空:a b,ab 0;
(2)在初中阶段我们已经学习了一元二次方程的三种解法;他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.
①x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.
三.分式方程的应用
3.(2022•贵阳)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?
四.一次函数的应用
4.(2021•贵阳)为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如表:
产品
展板
宣传册
横幅
制作一件产品所需时间(小时)
1
制作一件产品所获利润(元)
20
3
10
(1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;
(2)若广告公司所获利润为700元,且三种产品均有制作,求制作三种产品总量的最小值.
5.(2020•贵阳)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生 绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:
(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;
(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?
五.反比例函数与一次函数的交点问题
6.(2022•贵阳)一次函数y=﹣x﹣3的图象与反比例函数y=的图象相交于A(﹣4,m),B(n,﹣4)两点.
(1)求这个反比例函数的表达式;
(2)根据图象写出使一次函数值小于反比例函数值的x的取值范围.
7.(2021•贵阳)如图,一次函数y=kx﹣2k(k≠0)的图象与反比例函数y=(m﹣1≠0)的图象交于点C,与x轴交于点A,过点C作CB⊥y轴,垂足为B,若S△ABC=3.
(1)求点A的坐标及m的值;
(2)若AB=2,求一次函数的表达式.
8.(2020•贵阳)如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.
(1)求反比例函数的表达式;
(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;
(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.
六.二次函数的应用
9.(2021•贵阳)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B到水面的距离是4m.
(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;
(2)一只宽为1.2m的打捞船径直向桥驶来,当船驶到桥拱下方且距O点0.4m时,桥下水位刚好在OA处,有一名身高1.68m的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).
(3)如图③,桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0),该抛物线在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m>0)个单位长度,平移后的函数图象在8≤x≤9时,y的值随x值的增大而减小,结合函数图象,求m的取值范围.
10.(2020•贵阳)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)
时间x(分钟)
0
1
2
3
4
5
6
7
8
9
9~15
人数y(人)
0
170
320
450
560
650
720
770
800
810
810
(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;
(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?
(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?
七.二次函数综合题
11.(2022•贵阳)已知二次函数y=ax2+4ax+b.
(1)求二次函数图象的顶点坐标(用含a,b的代数式表示);
(2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,AB=6,且图象过(1,c),(3,d),(﹣1,e),(﹣3,f)四点,判断c,d,e,f的大小,并说明理由;
(3)点M(m,n)是二次函数图象上的一个动点,当﹣2≤m≤1时,n的取值范围是﹣1≤n≤1,求二次函数的表达式.
八.矩形的性质
12.(2021•贵阳)如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.
(1)求证:△ABN≌△MAD;
(2)若AD=2,AN=4,求四边形BCMN的面积.
九.正方形的性质
13.(2022•贵阳)如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.
(1)求证:△ABE≌△FMN;
(2)若AB=8,AE=6,求ON的长.
一十.四边形综合题
14.(2022•贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.如图,在▱ABCD中,AN为BC边上的高,=m,点M在AD边上,且BA=BM,点E是线段AM上任意一点,连接BE,将△ABE沿BE翻折得△FBE.
(1)问题解决:如图①,当∠BAD=60°,将△ABE沿BE翻折后,使点F与点M重合,则= ;
(2)问题探究:
如图②,当∠BAD=45°,将△ABE沿BE翻折后,使EF∥BM,求∠ABE的度数,并求出此时m的最小值;
(3)拓展延伸:
当∠BAD=30°,将△ABE沿BE翻折后,若EF⊥AD,且AE=MD,根据题意在备用图中画出图形,并求出m的值.
15.(2021•贵阳)(1)阅读理解
我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.
根据“赵爽弦图”写出勾股定理和推理过程;
(2)问题解决
勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形ACDE的中心O,作FG⊥HP,将它分成4份,所分成的四部分和以BC为边的正方形恰好能拼成以AB为边的正方形.若AC=12,BC=5,求EF的值;
(3)拓展探究
如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形N的边长为定值n,小正方形A,B,C,D的边长分别为a,b,c,d.
已知∠1=∠2=∠3=α,当角α(0°<α<90°)变化时,探究b与c的关系式,并写出该关系式及解答过程(b与c的关系式用含n的式子表示).
16.(2020•贵阳)如图,四边形ABCD是正方形,点O为对角线AC的中点.
(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是 ,位置关系是 ;
(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;
(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.
一十一.扇形面积的计算
17.(2021•贵阳)如图,在⊙O中,AC为⊙O的直径,AB为⊙O的弦,点E是的中点,过点E作AB的垂线,交AB于点M,交⊙O于点N,分别连接EB,CN.
(1)EM与BE的数量关系是 ;
(2)求证:=;
(3)若AM=,MB=1,求阴影部分图形的面积.
一十二.圆的综合题
18.(2022•贵阳)如图,AB为⊙O的直径,CD是⊙O的切线,C为切点,连接BC.ED垂直平分OB,垂足为E,且交于点F,交BC于点P,连接BF,CF.
(1)求证:∠DCP=∠DPC;
(2)当BC平分∠ABF时,求证:CF∥AB;
(3)在(2)的条件下,OB=2,求阴影部分的面积.
一十三.作图—应用与设计作图
19.(2020•贵阳)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
(1)在图①中,画一个直角三角形,使它的三边长都是有理数;
(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;
(3)在图③中,画一个直角三角形,使它的三边长都是无理数.
一十四.相似三角形的判定与性质
20.(2020•贵阳)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.
(1)求证:四边形AEFD是平行四边形;
(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.
21.(2020•贵阳)如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.
(1)求证:AD=CD;
(2)若AB=4,BF=5,求sin∠BDC的值.
一十五.解直角三角形的应用-仰角俯角问题
22.(2022•贵阳)交通安全心系千万家,高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF=7m,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).
(1)求A,B两点之间的距离(结果精确到1m);
(2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.
(参考数据:≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)
23.(2021•贵阳)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C两点之间的距离.如图所示,小星站在广场的B处遥控无人机,无人机在A处距离地面的飞行高度是41.6m,此时从无人机测得广场C处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE=1.6m,EA=50m(点A,E,B,C在同一平面内).
(1)求仰角α的正弦值;
(2)求B,C两点之间的距离(结果精确到1m).
(sin63°≈0.89,cos63°≈0.45,tan63°≈1.96,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)
24.(2020•贵阳)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)
(1)求屋顶到横梁的距离AG;
(2)求房屋的高AB(结果精确到1m).
一十六.扇形统计图
25.(2020•贵阳)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:
部分初三学生每天听空中黔课时间的人数统计表
时间/h
1.5
2
2.5
3
3.5
4
人数/人
2
6
6
10
m
4
(1)本次共调查的学生人数为 ,在表格中,m= ;
(2)统计的这组数据中,每天听空中黔课时间的中位数是 ,众数是 ;
(3)请就疫情期间如何学习的问题写出一条你的看法.
一十七.条形统计图
26.(2021•贵阳)2020年我国进行了第七次全国人口普查,小星要了解我省城镇及乡村人口变化情况,根据贵州省历次人口普查结果,绘制了如下的统计图表.请利用统计图表提供的信息回答下列问题:
贵州省历次人口普查城镇人口统计表
年份
1953
1964
1982
1990
2000
2010
2020
城镇人口(万人)
110
204
540
635
845
1175
2050
城镇化率
7%
12%
19%
20%
24%
a
53%
(1)这七次人口普查乡村人口数的中位数是 万人;
(2)城镇化率是一个国家或地区城镇人口占其总人口的百分率,是衡量城镇化水平的一个指标.根据统计图表提供的信息,我省2010年的城镇化率a是 (结果精确到1%);假设未来几年我省城乡总人口数与2020年相同,城镇化率要达到60%,则需从乡村迁入城镇的人口数量是 万人(结果保留整数);
(3)根据贵州省历次人口普查统计图表,用一句话描述我省城镇化的趋势.
一十八.折线统计图
27.(2022•贵阳)小星想了解全国2019年至2021年货物进出口总额变化情况,他根据国家统计局2022年发布的相关信息,绘制了如下的统计图,请利用统计图中提供的信息回答下列问题:
(1)为了更好的表现出货物进出口额的变化趋势,你认为应选择 统计图更好(填“条形”或“折线”);
(2)货物进出口差额是衡量国家经济的重要指标,货物出口总额超过货物进口总额的差额称为货物进出口顺差,2021年我国货物进出口顺差是 万亿元;
(3)写出一条关于我国货物进出口总额变化趋势的信息.
一十九.列表法与树状图法
28.(2020•贵阳)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.
(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;
(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.
参考答案与试题解析
一.完全平方公式
1.(2021•贵阳)(1)有三个不等式2x+3<﹣1,﹣5x>15,3(x﹣1)>6,请在其中任选两个不等式,组成一个不等式组,并求出它的解集;
(2)小红在计算a(1+a)﹣(a﹣1)2时,解答过程如下:
a(1+a)﹣(a﹣1)2
=a+a2﹣(a2﹣1)……第一步
=a+a2﹣a2﹣1……第二步
=a﹣1……第三步
小红的解答从第 一 步开始出错,请写出正确的解答过程.
【解答】(1)解:第一种组合:,
解不等式①,得x<﹣2,
解不等式②,得x<﹣3
∴原不等式组的解集是x<﹣3;
第二种组合:,
解不等式①,得x<﹣2,
解不等式②,得x>3,
∴原不等式组无解;
第三种组合:,
解不等式①,得x<﹣3,
解不等式②,得x>3,
∴原不等式组无解;
(任选其中一种组合即可);
(2)一,
解:a(1+a)﹣(a﹣1)2
=a+a2﹣(a2﹣2a+1)
=a+a2﹣a2+2a﹣1
=3a﹣1.
故答案为一.
二.解一元二次方程-因式分解法
2.(2022•贵阳)(1)a,b两个实数在数轴上的对应点如图所示.
用“<”或“>”填空:a < b,ab < 0;
(2)在初中阶段我们已经学习了一元二次方程的三种解法;他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.
①x2+2x﹣1=0;②x2﹣3x=0;③x2﹣4x=4;④x2﹣4=0.
【解答】解:(1)由数轴上点的坐标知:a<0<b,
∴a<b,ab<0.
故答案为:<,<.
(2)①利用公式法:x2+2x﹣1=0,
Δ=22﹣4×1×(﹣1)
=4+4
=8,
∴x=
=
=
=﹣1±.
∴x1=﹣1+,x2=﹣1﹣;
②利用因式分解法:x2﹣3x=0,
∴x(x﹣3)=0.
∴x1=0,x2=3;
③利用配方法:x2﹣4x=4,
两边都加上4,得x2﹣4x+4=8,
∴(x﹣2)2=8.
∴x﹣2=±2.
∴x1=2+2,x2=2﹣2;
④利用因式分解法:x2﹣4=0,
∴(x+2)(x﹣2)=0.
∴x1=﹣2,x2=2.
三.分式方程的应用
3.(2022•贵阳)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?
【解答】解:设每辆小货车的货运量是x吨,则每辆大货车的货运量是(x+4)吨,
依题意得:=,
解得:x=12,
经检验,x=12是原方程的解,且符合题意,
∴x+4=12+4=16.
答:每辆大货车的货运量是16吨,每辆小货车的货运量是12吨.
四.一次函数的应用
4.(2021•贵阳)为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如表:
产品
展板
宣传册
横幅
制作一件产品所需时间(小时)
1
制作一件产品所获利润(元)
20
3
10
(1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;
(2)若广告公司所获利润为700元,且三种产品均有制作,求制作三种产品总量的最小值.
【解答】解:(1)设制作展板数量为x件,横幅数量为y件,则宣传册数量为5x件,
由题意得:,
解得:,
答:制作展板数量10件,宣传册数量50件,横幅数量10件;
(2)设制作三种产品总量为w件,展板数量m件,则宣传册数量5m件,横幅数量(w﹣6m)件,
由题意得:20m+3×5m+10(w﹣6m)=700,
解得:w=m+70,
∵,
解得:0<m<20,
∵w,m是整数,
∴m的最小值为2,
∴w是m的一次函数,
∵k=,
∴w随m的增加而增加,
∵三种产品均有制作,且w,m均为正整数,
∴当m=2时,w有最小值,则wmin=75,
答:制作三种产品总量的最小值为75件.
5.(2020•贵阳)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生 绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:
(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;
(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?
【解答】解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据题意,得:
6x+10(100﹣x)=1300﹣378,
解得x=19.5,
因为钢笔的数量不可能是小数,所以学习委员搞错了;
(2)设笔记本的单价为a元,根据题意,得:
6x+10(100﹣x)+a=1300﹣378,
整理,得:x=,
因为0<a<10,x随a的增大而增大,所以19.5<x<22,
∵x取整数,
∴x=20,21.
当x=20时,a=4×20﹣78=2;
当x=21时,a=4×21﹣78=6,
所以笔记本的单价可能是2元或6元.
五.反比例函数与一次函数的交点问题
6.(2022•贵阳)一次函数y=﹣x﹣3的图象与反比例函数y=的图象相交于A(﹣4,m),B(n,﹣4)两点.
(1)求这个反比例函数的表达式;
(2)根据图象写出使一次函数值小于反比例函数值的x的取值范围.
【解答】解:(1)∵一次函数y=﹣x﹣3过点A(﹣4,m),
∴m=﹣(﹣4)﹣3=1.
∴点A的坐标为(﹣4,1).
∵反比例函数y=的图象过点A,
∴k=xy=﹣4×1=﹣4.
∴反比例函数的表达式为y=﹣.
(2)∵反比例函数y=﹣过点B(n,﹣4).
∴﹣4=﹣,解得n=1.
∵一次函数值小于反比例函数值,
∴一次函数图象在反比例函数图象的下方.
∴在y轴左侧,一次函数值小于反比例函数值x的取值范围为:﹣4<x<0;
在第四象限内,一次函数值小于反比例函数值x的取值范围为:x>1.
∴一次函数值小于反比例函数值的x取值范围为:﹣4<x<0或x>1.
7.(2021•贵阳)如图,一次函数y=kx﹣2k(k≠0)的图象与反比例函数y=(m﹣1≠0)的图象交于点C,与x轴交于点A,过点C作CB⊥y轴,垂足为B,若S△ABC=3.
(1)求点A的坐标及m的值;
(2)若AB=2,求一次函数的表达式.
【解答】解:(1)令y=0,则kx﹣2k=0,
∴x=2,
∴A(2,0),
设C(a,b),
∵CB⊥y轴,
∴B(0,b),
∴BC=﹣a,
∵S△ABC=3,
∴,
∴ab=﹣6,
∴m﹣1=ab=﹣6,
∴m=﹣5,
即A(2,0),m=﹣5;
(2)在Rt△AOB中,AB2=OA2+OB2,
∵,
∴b2+4=8,
∴b2=4,
∴b=±2,
∵b>0,
∴b=2,
∴a=﹣3,
∴C(﹣3,2),
将C(﹣3,2)代入到直线解析式中得,
∴一次函数的表达式为.
8.(2020•贵阳)如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.
(1)求反比例函数的表达式;
(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;
(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.
【解答】解:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),
将(2,3)代入反比例函数表达式并解得:k=2×3=6,
故反比例函数表达式为:y=①;
(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,
联立①②并解得:,
故交点坐标为(﹣2,﹣3)和(3,2);
(3)设一次函数的表达式为:y=kx+5③,
联立①③并整理得:kx2+5x﹣6=0,
∵两个函数没有公共点,故△=25+24k<0,解得:k<﹣,
故可以取k=﹣2(答案不唯一),
故一次函数表达式为:y=﹣2x+5(答案不唯一).
六.二次函数的应用
9.(2021•贵阳)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B到水面的距离是4m.
(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;
(2)一只宽为1.2m的打捞船径直向桥驶来,当船驶到桥拱下方且距O点0.4m时,桥下水位刚好在OA处,有一名身高1.68m的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).
(3)如图③,桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0),该抛物线在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m>0)个单位长度,平移后的函数图象在8≤x≤9时,y的值随x值的增大而减小,结合函数图象,求m的取值范围.
【解答】解:(1)如图②,由题意得:水面宽OA是8m,桥拱顶点B到水面的距离是4m,
结合函数图象可知,顶点B (4,4),点O (0,0),
设二次函数的表达式为y=a(x﹣4)2+4,
将点O (0,0)代入函数表达式,
解得:a=﹣,
∴二次函数的表达式为y=﹣(x﹣4)2+4,
即y=﹣x2+2x (0≤x≤8);
(2)工人不会碰到头,理由如下:
∵打捞船距O点0.4m,打捞船宽1.2m,工人直立在打捞船中间,
由题意得:工人距O点距离为0.4+×1.2=1,
∴将x=1代入y=﹣x2+2x,
解得:y==1.75,
∵1.75m>1.68m,
∴此时工人不会碰到头;
(3)抛物线y=﹣x2+2x在x轴上方的部分与桥拱在平静水面中的倒影关于x轴成轴对称.
如图所示,
新函数图象的对称轴也是直线x=4,
此时,当0≤x≤4或x≥8时,y的值随x值的增大而减小,
将新函数图象向右平移m个单位长度,可得平移后的函数图象,
如图所示,
∵平移不改变图形形状和大小,
∴平移后函数图象的对称轴是直线x=4+m,
∴当m≤x≤4+m或x≥8+m时,y的值随x值的增大而减小,
∴当8≤x≤9时,y的值随x值的增大而减小,结合函数图象,
得m的取值范围是:
①m≤8且4+m≥9,得5≤m≤8,
②8+m≤8,得m≤0,
由题意知m>0,
∴m≤0不符合题意,舍去,
综上所述,m的取值范围是5≤m≤8.
10.(2020•贵阳)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)
时间x(分钟)
0
1
2
3
4
5
6
7
8
9
9~15
人数y(人)
0
170
320
450
560
650
720
770
800
810
810
(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;
(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?
(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?
【解答】解:(1)由表格中数据的变化趋势可知,
①当0≤x≤9时,y是x的二次函数,
∵当x=0时,y=0,
∴二次函数的关系式可设为:y=ax2+bx,
由题意可得:,
解得:,
∴二次函数关系式为:y=﹣10x2+180x,
②当9<x≤15时,y=810,
∴y与x之间的函数关系式为:y=;
(2)设第x分钟时的排队人数为w人,
由题意可得:w=y﹣40x=,
①当0≤x≤9时,w=﹣10x2+140x=﹣10(x﹣7)2+490,
∴当x=7时,w的最大值=490,
②当9<x≤15时,w=810﹣40x,w随x的增大而减小,
∴210≤w<450,
∴排队人数最多时是490人,
要全部考生都完成体温检测,根据题意得:810﹣40x=0,
解得:x=20.25,
答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;
(3)设从一开始就应该增加m个检测点,由题意得:12×20(m+2)≥810,
解得m≥,
∵m是整数,
∴m≥的最小整数是2,
∴一开始就应该至少增加2个检测点.
七.二次函数综合题
11.(2022•贵阳)已知二次函数y=ax2+4ax+b.
(1)求二次函数图象的顶点坐标(用含a,b的代数式表示);
(2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,AB=6,且图象过(1,c),(3,d),(﹣1,e),(﹣3,f)四点,判断c,d,e,f的大小,并说明理由;
(3)点M(m,n)是二次函数图象上的一个动点,当﹣2≤m≤1时,n的取值范围是﹣1≤n≤1,求二次函数的表达式.
【解答】解:(1)∵y=ax2+4ax+b=a(x+2)2﹣4a+b,
∴二次函数图象的顶点坐标为(﹣2,﹣4a+b).
(2)由(1)得抛物线对称轴为直线x=﹣2,
当a>0时,抛物线开口向上,
∵3﹣(﹣2)>1﹣(﹣2)>(﹣1)﹣(﹣2)=(﹣3)﹣(﹣2),
∴d>c>e=f.
当a<0时,抛物线开口向下,
∵3﹣(﹣2)>1﹣(﹣2)>(﹣1)﹣(﹣2)=(﹣3)﹣(﹣2),
∴d<c<e=f.
(3)当a>0时,抛物线开口向上,x>﹣2时,y随x增大而增大,
∴m=﹣2时,n=﹣1,m=1时,n=1,
∴,
解得,
∴y=x2+x﹣.
当a<0时,抛物线开口向下,x>﹣2时,y随x增大而减小,
∴m=﹣2时,n=1,m=1时,n=﹣1,
∴,
解得.
∴y=﹣x2﹣x+.
综上所述,y=x2+x﹣或y=﹣x2﹣x+.
八.矩形的性质
12.(2021•贵阳)如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.
(1)求证:△ABN≌△MAD;
(2)若AD=2,AN=4,求四边形BCMN的面积.
【解答】(1)证明:在矩形ABCD中,∠D=90°,DC∥AB,
∴∠BAN=∠AMD,
∵BN⊥AM,
∴∠BNA=90°,
在△ABN和△MAD中,
,
∴△ABN≌△MAD(AAS);
(2)解:∵△ABN≌△MAD,
∴BN=AD,
∵AD=2,
∴BN=2,
又∵AN=4,
在Rt△ABN中,AB===2,
∴S矩形ABCD=2×2=4,S△ABN=S△MAD=×2×4=4,
∴S四边形BCMN=S矩形ABCD﹣S△ABN﹣S△MAD=4﹣8.
九.正方形的性质
13.(2022•贵阳)如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.
(1)求证:△ABE≌△FMN;
(2)若AB=8,AE=6,求ON的长.
【解答】解:(1)∵四边形ABCD为正方形,
∴AB=AD,AB∥CD,
又∵MF∥AD,
∴四边形AMFD为矩形,
∴AD=MF,
∵BE的垂直平分线交AB于点M,交CD于点N,垂足为O,
∴∠MFN=∠BAE=90°,∠FMN+∠BMO=∠BMO+MBO=90°,
∴∠FMN=∠MBO,
在△ABE和△FMN中,
,
∴△ABE≌△FMN(ASA);
(2)连接ME,
∵BE的垂直平分线交AB于点M,交CD于点N,垂足为O,
∴BM=EM,
设BM=ME=x,
∴AM=8﹣x,
在△AME中,x2=(8﹣x)2+62,
∴x=,
∴BM=,
∵∠MOB=∠A=90°,∠B是公共角,
∴△BOM∽△BAE,
∴OM:AE=BM:BE,
∵AB=8,AE=6,
∴BE==10,
∴OM:6=:10,
∴OM=,
∵△ABE≌△FMN,
∴NM=BE=10,
∴ON=MN﹣MO=.
一十.四边形综合题
14.(2022•贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.如图,在▱ABCD中,AN为BC边上的高,=m,点M在AD边上,且BA=BM,点E是线段AM上任意一点,连接BE,将△ABE沿BE翻折得△FBE.
(1)问题解决:如图①,当∠BAD=60°,将△ABE沿BE翻折后,使点F与点M重合,则= ;
(2)问题探究:
如图②,当∠BAD=45°,将△ABE沿BE翻折后,使EF∥BM,求∠ABE的度数,并求出此时m的最小值;
(3)拓展延伸:
当∠BAD=30°,将△ABE沿BE翻折后,若EF⊥AD,且AE=MD,根据题意在备用图中画出图形,并求出m的值.
【解答】解:(1)∵BA=BM,∠BAD=60°∴△ABM是等边三角形,
∴AB=AM=BM,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠ABN=∠BAM=60°,
∵AN为BC边上的高,
∴==,
故答案为:;
(2)∵∠BAD=45°,BA=BM,
∴△AMB是等腰直角三角形,
∴∠MBC=∠AMB=45°,
∵EF∥BM,
∴∠FEM=∠AMB=45°,
∴∠AEB=∠FEB=(180°+45°)=112.5°,
∵AD∥NC,
∴∠BAE=∠ABN=45°,
∴∠ABE=180°﹣∠AEB﹣∠BAE=22.5°,
∵=m,△AMB是等腰直角三角形,AN为底边上的高,则AN=AM,
∵点M在AD边上,
∴当AD=AM时,m取得最小值,最小值为=2,
(3)如图,连接FM,延长EF交NC于点G,
∵∠BAD=30°,则∠ABN=30°,
设AN=a,则AB=2a,NB=a,
∵EF⊥AD,
∴∠AEB=∠FEB=(180°+90°)=135°,
∵∠EAB=∠BAD=30°,
∴∠ABE=15°,
∴∠ABF=30°,
∵AB=BM,∠BAD=30°,
∴∠ABM=120°,
∵∠MBC=∠AMB=30°,
∴∠FBM=90°,
在Rt△FBM中,FB=AB=BM,
∴FM=FB=2a,
∴EG⊥GB,
∵∠EBG=∠ABE+∠ABN=45°,
∴GB=EG=a,
∵NB=a,
∴AE=EF=MD=(﹣1)a,
在Rt△EFM中,EM==(+1)a,
∴AD=AE+EM+MD=2AE+EM=(3﹣1)a,
∴m==3﹣1或3+1.
15.(2021•贵阳)(1)阅读理解
我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.
根据“赵爽弦图”写出勾股定理和推理过程;
(2)问题解决
勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形ACDE的中心O,作FG⊥HP,将它分成4份,所分成的四部分和以BC为边的正方形恰好能拼成以AB为边的正方形.若AC=12,BC=5,求EF的值;
(3)拓展探究
如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形N的边长为定值n,小正方形A,B,C,D的边长分别为a,b,c,d.
已知∠1=∠2=∠3=α,当角α(0°<α<90°)变化时,探究b与c的关系式,并写出该关系式及解答过程(b与c的关系式用含n的式子表示).
【解答】解:(1)a2+b2=c2(直角三角形两条直角边的平方和等于斜边的平方),证明如下:
∵如图①是由直角边长分别为a,b的四个全等的直角三角形与中间一个边长为(b﹣a)的小正方形拼成的一个边长为c的大正方形,
∴4△ADE的面积+正方形EFGH的面积=正方形ABCD的面积,
即4×ab+(b﹣a)2=c2,
整理得:a2+b2=c2;
(2)由题意得:正方形ACDE被分成4个全等的四边形,
设EF=a,FD=b,
分两种情况:
①a>b时,
∴a+b=12,
∵正方形ABIJ是由正方形ACDE被分成的4个全等的四边形和正方形CBLM拼成,
∴E'F'=EF,KF'=FD,E'K=BC=5,
∵E'F'﹣KF'=E'K,
∴a﹣b=5,
∴,
解得:a=,
∴EF=;
②a<b时,同①得:,
解得:a=,
∴EF=;
综上所述,EF为或;
(3)c+b=n,理由如下:
如图③所示:
设正方形E的边长为e,正方形F的边长为f,
∵∠1=∠2=∠3=α,∠PMQ=∠D'OE'=∠B'C'A'=90°,
∴△PMQ∽△D'OE'∽△B'C'A',
∴=,=,
即=,=,
∴e2=cn,f2=bn,
在Rt△A'B'C'中,由勾股定理得:e2+f2=n2,
∴cn+bn=n2,
∴c+b=n.
16.(2020•贵阳)如图,四边形ABCD是正方形,点O为对角线AC的中点.
(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是 PQ=BO ,位置关系是 PQ⊥BO ;
(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;
(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.
【解答】解:(1)∵点O为对角线AC的中点,
∴BO⊥AC,BO=CO,
∵P为BC的中点,Q为BO的中点,
∴PQ∥OC,PQ=OC,
∴PQ⊥BO,PQ=BO;
故答案为:PQ=BO,PQ⊥BO.
(2)△PQB的形状是等腰直角三角形.理由如下:
连接O'P并延长交BC于点F,
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=90°,
∵将△AOB绕点A按顺时针方向旋转45°得到△AO'E,
∴△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,
∴∠O'EP=∠FCP,∠PO'E=∠PFC,
又∵点P是CE的中点,
∴CP=EP,
∴△O'PE≌△FPC(AAS),
∴O'E=FC=O'A,O'P=FP,
∴AB﹣O'A=CB﹣FC,
∴BO'=BF,
∴△O'BF为等腰直角三角形.
∴BP⊥O'F,O'P=BP,
∴△BPO'也为等腰直角三角形.
又∵点Q为O'B的中点,
∴PQ⊥O'B,且PQ=BQ,
∴△PQB的形状是等腰直角三角形;
(3)延长O'E交BC边于点G,连接PG,O'P.
∵四边形ABCD是正方形,AC是对角线,
∴∠ECG=45°,
由旋转得,四边形O'ABG是矩形,
∴O'G=AB=BC,∠EGC=90°,
∴△EGC为等腰直角三角形.
∵点P是CE的中点,
∴PC=PG=PE,∠CPG=90°,∠EGP=45°,
∴△O'GP≌△BCP(SAS),
∴∠O'PG=∠BPC,O'P=BP,
∴∠O'PG﹣∠GPB=∠BPC﹣∠GPB=90°,
∴∠O'PB=90°,
∴△O'PB为等腰直角三角形,
∵点Q是O'B的中点,
∴PQ=O'B=BQ,PQ⊥O'B,
∵AB=1,
∴O'A=,
∴O'B===,
∴BQ=.
∴S△PQB=BQ•PQ=×=.
一十一.扇形面积的计算
17.(2021•贵阳)如图,在⊙O中,AC为⊙O的直径,AB为⊙O的弦,点E是的中点,过点E作AB的垂线,交AB于点M,交⊙O于点N,分别连接EB,CN.
(1)EM与BE的数量关系是 BE=EM ;
(2)求证:=;
(3)若AM=,MB=1,求阴影部分图形的面积.
【解答】解:(1)∵AC为⊙O的直径,点E是的中点,
∴∠ABE=45°,
∵AB⊥EN,
∴△BME是等腰直角三角形,
∴BE=EM,
故答案为BE=EM;
(2)连接EO,
∵AC是⊙O的直径,E是的中点,
∴∠AOE=90°,
∴∠ABE=∠AOE=45°,
∵EN⊥AB,垂足为点M,
∴∠EMB=90°
∴∠ABE=∠BEN=45°,
∴=,
∵点E是的中点,
∴=,
∴=,
∴﹣=﹣,
∴=;
(3)连接AE,OB,ON,
∵EN⊥AB,垂足为点M,
∴∠AME=∠EMB=90°,
∵BM=1,由(2)得∠ABE=∠BEN=45°,
∴EM=BM=1,
又∵BE=EM,
∴BE=,
∵在Rt△AEM中,EM=1,AM=,
∴tan∠EAB==,
∴∠EAB=30°,
∵∠EAB=∠EOB,
∴∠EOB=60°,
又∵OE=OB,
∴△EOB是等边三角形,
∴OE=BE=,
又∵=,
∴BE=CN,
∴△OEB≌△OCN(SSS),
∴CN=BE=
又∵S扇形OCN==,S△OCN=CN×CN=×=,
∴S阴影=S扇形OCN﹣S△OCN=﹣.
一十二.圆的综合题
18.(2022•贵阳)如图,AB为⊙O的直径,CD是⊙O的切线,C为切点,连接BC.ED垂直平分OB,垂足为E,且交于点F,交BC于点P,连接BF,CF.
(1)求证:∠DCP=∠DPC;
(2)当BC平分∠ABF时,求证:CF∥AB;
(3)在(2)的条件下,OB=2,求阴影部分的面积.
【解答】(1)证明:连接OC,如图:
∵CD是⊙O的切线,C为切点,
∴∠DCO=90°,即∠OCB+∠DCP=90°,
∵DE⊥OB,
∴∠DEB=90°,
∴∠OBC+∠BPE=90°,
∵OB=OC,
∴∠OCB=∠OBC,
∴∠DCP=∠BPE,
∵∠BPE=∠DPC,
∴∠DCP=∠DPC;
(2)证明:连接OF,如图:
∵ED垂直平分OB,
∴OF=BF,
∵OF=OB,
∴BF=OF=OB,
∴△BOF是等边三角形,
∴∠FOB=∠ABF=60°,
∴∠FCB=∠FOB=30°,
∵BC平分∠ABF,
∴∠ABC=∠ABF=30°,
∴∠FCB=∠ABC,
∴CF∥AB;
(3)解:连接OF、OC,如图:
由(2)知,∠ABC=∠CBF=30°,
∴∠COF=2∠CBF=60°,
∵OB=2,即⊙O半径为2,
∴S扇形COF==,
∵OC=OF,∠COF=60°,
∴△COF是等边三角形,
∴CF=OF=OB=2,
∵ED垂直平分OB,
∴OE=BE=OB=1,∠FEB=90°,
在Rt△FEB中,
EF===,
∴S△COF=CF•EF=×2×=,
∴S阴影=S扇形COF﹣S△COF=﹣,
答:阴影部分的面积为﹣.
一十三.作图—应用与设计作图
19.(2020•贵阳)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
(1)在图①中,画一个直角三角形,使它的三边长都是有理数;
(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;
(3)在图③中,画一个直角三角形,使它的三边长都是无理数.
【解答】解:(1)如图①中,△ABC即为所求.
(2)如图②中,△ABC即为所求.
(3)△ABC即为所求.
一十四.相似三角形的判定与性质
20.(2020•贵阳)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.
(1)求证:四边形AEFD是平行四边形;
(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.
【解答】(1)证明:∵∠四边形ABCD是矩形,
∴AD∥BC,AD=BC,
∵BE=CF,
∴BE+EC=EC+CF,即BC=EF,
∴AD=EF,
∴四边形AEFD是平行四边形;
(2)解:连接DE,如图,
∵四边形ABCD是矩形,
∴∠B=90°,
在Rt△ABE中,AE==2,
∵AD∥BC,
∴∠AEB=∠EAD,
∵∠B=∠AED=90°,
∴△ABE∽△DEA,
∴AE:AD=BE:AE,
∴AD==10,
∵AB=4,
∴四边形AEFD的面积=AB×AD=4×10=40.
21.(2020•贵阳)如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.
(1)求证:AD=CD;
(2)若AB=4,BF=5,求sin∠BDC的值.
【解答】解:(1)证明:∵∠CAD=∠ABD,
又∵∠ABD=∠ACD,
∴∠ACD=∠CAD,
∴AD=CD;
(2)∵AF是⊙O的切线,
∴∠FAB=90°,
∵AB是⊙O的直径,
∴∠ACB=∠ADB=∠ADF=90°,
∴∠ABD+∠BAD=∠BAD+∠FAD=90°,
∴∠ABD=∠FAD,
∵∠ABD=∠CAD,
∴∠FAD=∠EAD,
∵AD=AD,
∴△ADF≌△ADE(ASA),
∴AF=AE,DF=DE,
在Rt△ADE中,AB=4,BF=5,
∴AF=,
∴AE=AF=3,
∵,
∴,
∴DE=,
∴BE=BF﹣2DE=,
∵∠AED=∠BEC,∠ADE=∠BCE=90°,
∴△BEC∽△AED,
∴,
∴,
∴,
∵∠BDC=∠BAC,
在Rt△ACB中,∠ACB=90°
∴.
法二、如图,连接OD,AC交于点H,
∵AD=CD,
∴OD⊥AC,
设OH为x,则HD为2﹣x,
∵AF与⊙O相切,
∴∠BAF=90°,
∵AB=4,BF=5,
∴AF=3,OA=2,
∵AD⊥BF,
∴AD==,
∴OA2﹣OH2=AD2﹣HD2,即22﹣x2=()2﹣(2﹣x)2,
解得x=,
∴sin∠BDC==.
一十五.解直角三角形的应用-仰角俯角问题
22.(2022•贵阳)交通安全心系千万家,高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF=7m,测速仪C和E之间的距离CE=750m,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60°,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).
(1)求A,B两点之间的距离(结果精确到1m);
(2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.
(参考数据:≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)
【解答】解:(1)由题意得:
∠CAD=25°,∠EBF=60°,CE=DF=750米,
在Rt△ACD中,CD=7米,
∴AD=≈=14(米),
在Rt△BEF中,EF=7米,
∴BF==≈4.1(米),
∴AB=AD+DF﹣BF=14+750﹣4.1≈760(米),
∴A,B两点之间的距离约为760米;
(2)小汽车从点A行驶到点B没有超速,
理由:由题意得:
760÷38=20米/秒,
∵20米/秒<22米/秒,
∴小汽车从点A行驶到点B没有超速.
23.(2021•贵阳)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C两点之间的距离.如图所示,小星站在广场的B处遥控无人机,无人机在A处距离地面的飞行高度是41.6m,此时从无人机测得广场C处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE=1.6m,EA=50m(点A,E,B,C在同一平面内).
(1)求仰角α的正弦值;
(2)求B,C两点之间的距离(结果精确到1m).
(sin63°≈0.89,cos63°≈0.45,tan63°≈1.96,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)
【解答】解:(1)如图,过A点作AD⊥BC于D,过E点作EF⊥AD于F,
∵∠EBD=∠FDB=∠DFE=90°,
∴四边形BDFE为矩形,
∴EF=BD,DF=BE=1.6m,
∴AF=AD﹣DF=41.6﹣1.6=40(m),
在Rt△AEF中,sin∠AEF===,
即sinα=.
答:仰角α的正弦值为;
(2)在Rt△AEF中,EF===30(m),
在Rt△ACD中,∠ACD=63°,AD=41.6m,
∵tan∠ACD=,
∴CD==≈21.22(m),
∴BC=BD+CD=30+21.22≈51(m).
答:B,C两点之间的距离约为51m.
24.(2020•贵阳)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)
(1)求屋顶到横梁的距离AG;
(2)求房屋的高AB(结果精确到1m).
【解答】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF∥BC,
∴AG⊥EF,EG=EF,∠AEG=∠ACB=35°,
在Rt△AGE中,∠AGE=90°,∠AEG=35°,
∵tan∠AEG=tan35°=,EG=6,
∴AG=6×0.7=4.2(米);
答:屋顶到横梁的距离AG约为4.2米;
(2)过E作EH⊥CB于H,
设EH=x,
在Rt△EDH中,∠EHD=90°,∠EDH=60°,
∵tan∠EDH=,
∴DH=,
在Rt△ECH中,∠EHC=90°,∠ECH=35°,
∵tan∠ECH=,
∴CH=,
∵CH﹣DH=CD=8,
∴﹣=8,
解得:x≈9.52,
∴AB=AG+BG=13.72≈14(米),
答:房屋的高AB约为14米.
一十六.扇形统计图
25.(2020•贵阳)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:
部分初三学生每天听空中黔课时间的人数统计表
时间/h
1.5
2
2.5
3
3.5
4
人数/人
2
6
6
10
m
4
(1)本次共调查的学生人数为 50 ,在表格中,m= 22 ;
(2)统计的这组数据中,每天听空中黔课时间的中位数是 3.5h ,众数是 3.5h ;
(3)请就疫情期间如何学习的问题写出一条你的看法.
【解答】解:(1)本次共调查的学生人数为:6÷12%=50(人),
m=50×44%=22,
故答案为:50,22;
(2)由题意得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,
∵第25个数和第26个数都是3.5h,
∴中位数是3.5h;
∵3.5h出现了22次,出现的次数最多,
∴众数是3.5h,
故答案为:3.5h,3.5h;
(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).
一十七.条形统计图
26.(2021•贵阳)2020年我国进行了第七次全国人口普查,小星要了解我省城镇及乡村人口变化情况,根据贵州省历次人口普查结果,绘制了如下的统计图表.请利用统计图表提供的信息回答下列问题:
贵州省历次人口普查城镇人口统计表
年份
1953
1964
1982
1990
2000
2010
2020
城镇人口(万人)
110
204
540
635
845
1175
2050
城镇化率
7%
12%
19%
20%
24%
a
53%
(1)这七次人口普查乡村人口数的中位数是 2300 万人;
(2)城镇化率是一个国家或地区城镇人口占其总人口的百分率,是衡量城镇化水平的一个指标.根据统计图表提供的信息,我省2010年的城镇化率a是 34% (结果精确到1%);假设未来几年我省城乡总人口数与2020年相同,城镇化率要达到60%,则需从乡村迁入城镇的人口数量是 271 万人(结果保留整数);
(3)根据贵州省历次人口普查统计图表,用一句话描述我省城镇化的趋势.
【解答】解:(1)这七次人口普查乡村人口数从小到大排列为:1391,1511,1818,2300,2315,2616,2680,
∴中位数是第四个数2300,
故答案为:2300;
(2)1175÷(2300+1175)×100%≈34%,
(2050+1818)×60%﹣2050≈271(万人),
故答案为:34%,271;
(3)随着年份的增加,城镇化率越来越高.
一十八.折线统计图
27.(2022•贵阳)小星想了解全国2019年至2021年货物进出口总额变化情况,他根据国家统计局2022年发布的相关信息,绘制了如下的统计图,请利用统计图中提供的信息回答下列问题:
(1)为了更好的表现出货物进出口额的变化趋势,你认为应选择 折线 统计图更好(填“条形”或“折线”);
(2)货物进出口差额是衡量国家经济的重要指标,货物出口总额超过货物进口总额的差额称为货物进出口顺差,2021年我国货物进出口顺差是 4.36 万亿元;
(3)写出一条关于我国货物进出口总额变化趋势的信息.
【解答】解:(1)为了更好的表现出货物进出口额的变化趋势,你认为应选择折线统计图更好,
故答案为:折线;
(2)21.73﹣17.37=4.36(万亿元),
即2021年我国货物进出口顺差是4.36万亿元;
故答案为:4.36;
(3)我国货物进出口总额增长速度都很快.(答案不唯一).
一十九.列表法与树状图法
28.(2020•贵阳)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.
(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;
(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.
【解答】解:(1)把《消防知识手册》《辞海》《辞海》分别记为A、B、C,
画树状图如图:
共有6个等可能的结果,恰好抽到2张卡片都是《辞海》的结果有2个,
∴恰好抽到2张卡片都是《辞海》的概率为=;
(2)设应添加x张《消防知识手册》卡片,
由题意得:=,
解得:x=4,
经检验,x=4是原方程的解;
答:应添加4张《消防知识手册》卡片.
相关试卷
这是一份山东省烟台市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类,共43页。试卷主要包含了先化简,再求值,÷,其中x=+1,y=﹣1,直播购物逐渐走进了人们的生活等内容,欢迎下载使用。
这是一份贵州省贵阳市2020-2022中考数学真题分类汇编-01选择题知识点分类,共22页。
这是一份贵州省遵义市2020-2022中考数学真题分类汇编-03解答题知识点分类,共46页。试卷主要包含了计算,满足的函数图象如图所示,的“关联抛物线”为C2等内容,欢迎下载使用。