年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    山东省烟台市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类

    山东省烟台市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类第1页
    山东省烟台市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类第2页
    山东省烟台市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类第3页
    还剩40页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省烟台市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类

    展开

    这是一份山东省烟台市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类,共43页。试卷主要包含了先化简,再求值,÷,其中x=+1,y=﹣1,直播购物逐渐走进了人们的生活等内容,欢迎下载使用。
    山东省烟台市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类
    一.分式的化简求值(共2小题)
    1.(2021•烟台)先化简,再求值:,从﹣2<x≤2中选出合适的x的整数值代入求值.
    2.(2020•烟台)先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.
    二.一元二次方程的应用(共1小题)
    3.(2021•烟台)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.
    (1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?
    (2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?
    三.分式方程的应用(共1小题)
    4.(2022•烟台)扫地机器人具备敏捷的转弯、制动能力和强大的自主感知、规划能力,深受人们喜爱.某商场根据市场需求,采购了A,B两种型号扫地机器人.已知B型每个进价比A型的2倍少400元.采购相同数量的A,B两种型号扫地机器人,分别用了96000元和168000元.请问A,B两种型号扫地机器人每个进价分别为多少元?

    四.解一元一次不等式组(共1小题)
    5.(2022•烟台)求不等式组的解集,并把它的解集表示在数轴上.
    五.一次函数的应用(共1小题)
    6.(2020•烟台)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3.已知每只B型口罩的销售利润是A型口罩的1.2倍.
    (1)求每只A型口罩和B型口罩的销售利润;
    (2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B型口罩的进货量不超过A型口罩的1.5倍,设购进A型口罩m只,这10000只口罩的销售总利润为W元.该药店如何进货,才能使销售总利润最大?
    六.反比例函数与一次函数的交点问题(共1小题)
    7.(2021•烟台)如图,正比例函数y=x与反比例函数y=(x>0)的图象交于点A,过点A作AB⊥y轴于点B,OB=4,点C在线段AB上,且AC=OC.
    (1)求k的值及线段BC的长;
    (2)点P为B点上方y轴上一点,当△POC与△PAC的面积相等时,请求出点P的坐标.

    七.二次函数综合题(共3小题)
    8.(2022•烟台)如图,已知直线y=x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过A,C两点,且与x轴的另一个交点为B,对称轴为直线x=﹣1.
    (1)求抛物线的表达式;
    (2)D是第二象限内抛物线上的动点,设点D的横坐标为m,求四边形ABCD面积S的最大值及此时D点的坐标;
    (3)若点P在抛物线对称轴上,是否存在点P,Q,使以点A,C,P,Q为顶点的四边形是以AC为对角线的菱形?若存在,请求出P,Q两点的坐标;若不存在,请说明理由.

    9.(2021•烟台)如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点.
    (1)求抛物线及直线BC的函数表达式;
    (2)点F是抛物线对称轴上一点,当FA+FC的值最小时,求出点F的坐标及FA+FC的最小值;
    (3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P的坐标;若不存在,请说明理由.

    10.(2020•烟台)如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.
    (1)求抛物线的表达式;
    (2)当线段DF的长度最大时,求D点的坐标;
    (3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.

    八.全等三角形的判定与性质(共1小题)
    11.(2020•烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.
    【问题解决】
    如图1,若点D在边BC上,求证:CE+CF=CD;
    【类比探究】
    如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.

    九.平行四边形的性质(共1小题)
    12.(2022•烟台)如图,在▱ABCD中,DF平分∠ADC,交AB于点F,BE∥DF,交AD的延长线于点E.若∠A=40°,求∠ABE的度数.

    一十.四边形综合题(共1小题)
    13.(2021•烟台)有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和AD上,连接BF,DE,M是BF的中点,连接AM交DE于点N.
    【观察猜想】
    (1)线段DE与AM之间的数量关系是    ,位置关系是    ;
    【探究证明】
    (2)将图1中的正方形AEGF绕点A顺时针旋转45°,点G恰好落在边AB上,如图2,其他条件不变,线段DE与AM之间的关系是否仍然成立?并说明理由.

    一十一.切线的判定与性质(共1小题)
    14.(2020•烟台)如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.
    (1)求证:EC是⊙O的切线;
    (2)若AD=2,求的长(结果保留π).

    一十二.圆的综合题(共1小题)
    15.(2021•烟台)如图,已知Rt△ABC中,∠C=90°.
    (1)请按如下要求完成尺规作图(不写作法,保留作图痕迹).
    ①作∠BAC的角平分线AD,交BC于点D;
    ②作线段AD的垂直平分线EF与AB相交于点O;
    ③以点O为圆心,以OD长为半径画圆,交边AB于点M.
    (2)在(1)的条件下,求证:BC是⊙O的切线;
    (3)若AM=4BM,AC=10,求⊙O的半径.

    一十三.作图—复杂作图(共1小题)
    16.(2022•烟台)如图,⊙O是△ABC的外接圆,∠ABC=45°.
    (1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);
    (2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.

    一十四.相似形综合题(共1小题)
    17.(2022•烟台)【问题呈现】
    如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.
    【类比探究】
    如图2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出的值.
    【拓展提升】
    如图3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且==.连接BD,CE.
    (1)求的值;
    (2)延长CE交BD于点F,交AB于点G.求sin∠BFC的值.


    一十五.解直角三角形的应用(共1小题)
    18.(2020•烟台)今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.

    (1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:
    测量对象
    男性(18~60岁)
    女性(18~55岁)
    抽样人数(人)
    2000
    5000
    20000
    2000
    5000
    20000
    平均身高(厘米)
    173
    175
    176
    164
    165
    164
    根据你所学的知识,若要更准确地表示这一地区男、女的平均身高,男性应采用    厘米,女性应采用    厘米;
    (2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点P距地面105厘米.指示牌挂在两臂杆AB,AC的连接点A处,A点距地面110厘米.臂杆落下时两端点B,C在同一水平线上,BC=100厘米,点C在点P的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.
    (参考数据表)
    计算器按键顺序
    计算结果(近似值)
    计算器按键顺序
    计算结果(近似值)

    0.1

    78.7

    0.2

    84.3

    1.7

    5.7

    3.5

    11.3
    一十六.解直角三角形的应用-坡度坡角问题(共1小题)
    19.(2022•烟台)如图,某超市计划将门前的部分楼梯改造成无障碍通道.已知楼梯共有五级均匀分布的台阶,高AB=0.75m,斜坡AC的坡比为1:2,将要铺设的通道前方有一井盖,井盖边缘离楼梯底部的最短距离ED=2.55m.为防止通道遮盖井盖,所铺设通道的坡角不得小于多少度?(结果精确到1)

    (参考数据表)
    计算器按键顺序
    计算结果(已精确到0.001)

    11.310

    0.003

    14.744

    0.005
    一十七.统计图的选择(共1小题)
    20.(2022•烟台)2021年4月,教育部办公厅在《关于进一步加强中小学生体质健康管理工作的通知》中明确要求保障学生每天校内、校外各1小时体育活动时间.某校为了解本校学生校外体育活动情况,随机对本校100名学生某天的校外体育活动时间进行了调查,并按照体育活动时间分A,B,C,D四组整理如下:
    组别
    体育活动时间/分钟
    人数
    A
    0≤x<30
    10
    B
    30≤x<60
    20
    C
    60≤x<90
    60
    D
    x≥90
    10
    根据以上信息解答下列问题:
    (1)制作一个适当的统计图,表示各组人数占所调查人数的百分比;
    (2)小明记录了自己一周内每天的校外体育活动时间,制作了如下折线统计图.请计算小明本周内平均每天的校外体育活动时间;
    (3)若该校共有1400名学生,请估计该校每天校外体育活动时间不少于1小时的学生人数.

    一十八.列表法与树状图法(共2小题)
    21.(2021•烟台)2021年是中国共产党成立100周年.为普及党史知识,培养爱国主义精神,今年五月份,某市党校举行党史知识竞赛,每个班级各选派15名学员参加了网上测试,现对甲、乙两班学员的分数进行整理分析如下:
    甲班15名学员测试成绩(满分100分)统计如下:
    87,84,88,76,93,87,73,98,86,87,79,85,84,85,98.
    乙班15名学员测试成绩(满分100分)统计如下:
    77,88,92,85,76,90,76,91,88,81,85,88,98,86,89
    (1)按如表分数段整理两班测试成绩
    班级
    70.5~75.5
    75.5~80.5
    80.5~85.5
    85.5~90.5
    90.5~95.5
    95.5~100.5

    1
    2
    a
    5
    1
    2

    0
    3
    3
    6
    2
    1
    表中a=   ;
    (2)补全甲班15名学员测试成绩的频数分布直方图;

    (3)两班测试成绩的平均数、众数、中位数、方差如表所示:
    班级
    平均数
    众数
    中位数
    方差

    86
    x
    86
    44.8

    86
    88
    y
    36.7
    表中x=   ,y=   .
    (4)以上两个班级学员掌握党史相关知识的整体水平较好的是    班;
    (5)本次测试两班的最高分都是98分,其中甲班2人,乙班1人.现从以上三人中随机抽取两人代表党校参加全市党史知识竞赛,利用树状图或表格求出恰好抽取甲、乙两班各一人参加全市党史知识竞赛的概率.

    22.(2020•烟台)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:
    (1)此次共调查了多少名学生?
    (2)将条形统计图补充完整;
    (3)我们把“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.


    参考答案与试题解析
    一.分式的化简求值(共2小题)
    1.(2021•烟台)先化简,再求值:,从﹣2<x≤2中选出合适的x的整数值代入求值.
    【解答】解:
    =[]•
    =•

    =,
    ∵﹣2<x≤2且(x+1)(x﹣1)≠0,2﹣x≠0,
    ∴x的整数值为﹣1,0,1,2且x≠±1,2,
    ∴x=0,
    当x=0时,原式==﹣1.
    2.(2020•烟台)先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.
    【解答】解:(﹣)÷,
    =[﹣]÷,
    =×,
    =,
    当x=+1,y=﹣1时,
    原式==2﹣.
    二.一元二次方程的应用(共1小题)
    3.(2021•烟台)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.
    (1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?
    (2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?
    【解答】解:(1)设售价应定为x元,则每件的利润为(x﹣40)元,日销售量为20+=(140﹣2x)件,
    依题意,得:(x﹣40)(140﹣2x)=(60﹣40)×20,
    整理,得:x2﹣110x+3000=0,
    解得:x1=50,x2=60(舍去).
    答:售价应定为50元;
    (2)该商品需要打a折销售,
    由题意,得,62.5×≤50,
    解得:a≤8,
    答:该商品至少需打8折销售.
    三.分式方程的应用(共1小题)
    4.(2022•烟台)扫地机器人具备敏捷的转弯、制动能力和强大的自主感知、规划能力,深受人们喜爱.某商场根据市场需求,采购了A,B两种型号扫地机器人.已知B型每个进价比A型的2倍少400元.采购相同数量的A,B两种型号扫地机器人,分别用了96000元和168000元.请问A,B两种型号扫地机器人每个进价分别为多少元?

    【解答】解:设每个A型扫地机器人的进价为x元,则每个B型扫地机器人的进价为(2x﹣400)元,
    依题意得:=,
    解得:x=1600,
    经检验,x=1600是原方程的解,且符合题意,
    ∴2x﹣400=2×1600﹣400=2800.
    答:每个A型扫地机器人的进价为1600元,每个B型扫地机器人的进价为2800元.
    四.解一元一次不等式组(共1小题)
    5.(2022•烟台)求不等式组的解集,并把它的解集表示在数轴上.
    【解答】解:,
    由①得:x≥1,
    由②得:x<4,
    ∴不等式组的解集为:1≤x<4,
    将不等式组的解集表示在数轴上如下:

    五.一次函数的应用(共1小题)
    6.(2020•烟台)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3.已知每只B型口罩的销售利润是A型口罩的1.2倍.
    (1)求每只A型口罩和B型口罩的销售利润;
    (2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B型口罩的进货量不超过A型口罩的1.5倍,设购进A型口罩m只,这10000只口罩的销售总利润为W元.该药店如何进货,才能使销售总利润最大?
    【解答】解:方法一:设销售A型口罩x只,销售B型口罩y只,根据题意得:
    ,解得,
    经检验,x=4000,y=5000是原方程组的解,
    ∴每只A型口罩的销售利润为:(元),每只B型口罩的销售利润为:0.5×1.2=0.6(元).
    答:每只A型口罩和B型口罩的销售利润分别为0.5元,0.6元.
    方法二:设A每只的利润为a元,则B为1.2a元,根据题意得:

    解得a=0.5,
    经检验,a=0.5是原方程组的解,
    所以1.2a=0.6,
    答:每只A型口罩和B型口罩的销售利润分别为0.5元,0.6元.
    (2)根据题意得,W=0.5m+0.6(10000﹣m)=﹣0.1m+6000,
    10000﹣m≤1.5m,解得m≥4000,
    ∵﹣0.1<0,
    ∴W随m的增大而减小,
    ∵m为正整数,
    ∴当m=4000时,W取最大值,则﹣0.1×4000+6000=5600,
    即药店购进A型口罩4000只、B型口罩6000只,才能使销售总利润最大,最大利润为5600元.
    六.反比例函数与一次函数的交点问题(共1小题)
    7.(2021•烟台)如图,正比例函数y=x与反比例函数y=(x>0)的图象交于点A,过点A作AB⊥y轴于点B,OB=4,点C在线段AB上,且AC=OC.
    (1)求k的值及线段BC的长;
    (2)点P为B点上方y轴上一点,当△POC与△PAC的面积相等时,请求出点P的坐标.

    【解答】解:(1)∵点A在正比例函数y=x上,AB⊥y轴,OB=4,
    ∵点B的坐标为(0,4),
    ∴点A的纵坐标是4,代入y=x,得x=8,
    ∴A(8,4),
    ∵点A在反比例函数y=(x>0)的图象上,
    ∴k=4×8=32,
    ∵点C在线段AB上,且AC=OC.
    设点C(c,4),
    ∵OC==,AC=AB﹣BC=8﹣c,
    ∴=8﹣c,解得:c=3,
    ∴点C(3,4),
    ∴BC=3,
    ∴k=32,BC=3;

    (2)如图,

    设点P(0,p),
    ∵点P为B点上方y轴上一点,
    ∴OP=p,BP=p﹣4,
    ∵A(8,4),C(3,4),
    ∴AC=8﹣3=5,BC=3,
    ∵△POC与△PAC的面积相等,
    ∴×3p=×5(p﹣4),解得:p=10,
    ∴P(0,10).
    七.二次函数综合题(共3小题)
    8.(2022•烟台)如图,已知直线y=x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过A,C两点,且与x轴的另一个交点为B,对称轴为直线x=﹣1.
    (1)求抛物线的表达式;
    (2)D是第二象限内抛物线上的动点,设点D的横坐标为m,求四边形ABCD面积S的最大值及此时D点的坐标;
    (3)若点P在抛物线对称轴上,是否存在点P,Q,使以点A,C,P,Q为顶点的四边形是以AC为对角线的菱形?若存在,请求出P,Q两点的坐标;若不存在,请说明理由.

    【解答】解:(1)当x=0时,y=4,
    ∴C (0,4),
    当y=0时,x+4=0,
    ∴x=﹣3,
    ∴A (﹣3,0),
    ∵对称轴为直线x=﹣1,
    ∴B(1,0),
    ∴设抛物线的表达式:y=a(x﹣1)•(x+3),
    ∴4=﹣3a,
    ∴a=﹣,
    ∴抛物线的表达式为:y=﹣(x﹣1)•(x+3)=﹣x2﹣x+4;
    (2)如图1,

    作DF⊥AB于F,交AC于E,
    ∴D(m,﹣﹣m+4),E(m,﹣m+4),
    ∴DE=﹣﹣m+4﹣(m+4)=﹣m2﹣4m,
    ∴S△ADC=OA=•(﹣m2﹣4m)=﹣2m2﹣6m,
    ∵S△ABC===6,
    ∴S=﹣2m2﹣6m+6=﹣2(m+)2+,
    ∴当m=﹣时,S最大=,
    当m=﹣时,y=﹣=5,
    ∴D(﹣,5);
    (3)设P(﹣1,n),
    ∵以A,C,P,Q为顶点的四边形是以AC为对角线的菱形,
    ∴PA=PC,
    即:PA2=PC2,
    ∴(﹣1+3)2+n2=1+(n﹣4)2,
    ∴n=,
    ∴P(﹣1,),
    ∵xP+xQ=xA+xC,yP+yQ=yA+yC
    ∴xQ=﹣3﹣(﹣1)=﹣2,yQ=4﹣=,
    ∴Q(﹣2,).
    9.(2021•烟台)如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点.
    (1)求抛物线及直线BC的函数表达式;
    (2)点F是抛物线对称轴上一点,当FA+FC的值最小时,求出点F的坐标及FA+FC的最小值;
    (3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P的坐标;若不存在,请说明理由.

    【解答】解:(1)由点A的坐标知,OA=2,
    ∵OC=2OA=4,故点C的坐标为(0,4),
    将点A、B、C的坐标代入抛物线表达式得:,解得,
    故抛物线的表达式为y=﹣x2+x+4;
    将点B、C的坐标代入一次函数表达式得:,解得,
    故直线BC的表达式为y=﹣x+4;

    (2)∵点A、B关于抛物线的对称轴对称,
    设抛物线的对称轴交BC于点F,则点F为所求点,此时,当FA+FC的值最小,

    理由:由函数的对称性知,AF=BF,
    则AF+FC=BF+FC=BC为最小,
    当x=1时,y=﹣x+4=3,故点F(1,3),
    由点B、C的坐标知,OB=OC=4,
    则BC=BO=4,
    即点F的坐标为(1,3)、FA+FC的最小值为4;

    (3)存在,理由:
    设点P的坐标为(m,﹣m2+m+4)、点Q的坐标为(t,﹣t+4),
    ①当点Q在点P的左侧时,
    如图2,过点P、Q分别作x轴的垂线,垂足分别为N、M,

    由题意得:∠PEQ=90°,
    ∴∠PEN+∠QEM=90°,
    ∵∠EQM+∠QEM=90°,
    ∴∠PEN=∠EQM,
    ∴∠QME=∠ENP=90°,
    ∴△QME∽△ENP,
    ∴=tan∠EQP=tan∠OCA===,
    则PN=﹣m2+m+4,ME=1﹣t,EN=m﹣1,QM=﹣t+4,
    ∴==,
    解得m=±(舍去负值),
    当m=时,﹣m2+m+4=,
    故点P的坐标为(,).
    ②当点Q在点P的右侧时,

    分别过点P、Q作抛物线对称轴的垂线,垂足分别为N、M,
    则MQ=t﹣1,ME=t﹣4,NE=﹣m2+m+4、PN=m﹣1,
    同理可得:△QME∽△ENP,
    ∴=2,
    =2,
    解得m=(舍去负值),
    故m=,
    故点P的坐标为(,),
    故点P的坐标为(,)或(,).
    10.(2020•烟台)如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.
    (1)求抛物线的表达式;
    (2)当线段DF的长度最大时,求D点的坐标;
    (3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.

    【解答】解:(1)设OB=t,则OA=2t,则点A、B的坐标分别为(2t,0)、(﹣t,0),
    则x==(2t﹣t),解得:t=1,
    故点A、B的坐标分别为(2,0)、(﹣1,0),
    则抛物线的表达式为:y=a(x﹣2)(x+1)=ax2+bx+2,
    解得:a=﹣1,b=1,
    故抛物线的表达式为:y=﹣x2+x+2;

    (2)对于y=﹣x2+x+2,令x=0,则y=2,故点C(0,2),
    由点A、C的坐标得,直线AC的表达式为:y=﹣x+2,
    设点D的横坐标为m,则点D(m,﹣m2+m+2),则点F(m,﹣m+2),
    则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,
    ∵﹣1<0,故DF有最大值,DF最大时m=1,
    ∴点D(1,2);

    (3)存在,理由:
    点D(m,﹣m2+m+2)(m>0),则OE=m,DE=﹣m2+m+2,
    以点O,D,E为顶点的三角形与△BOC相似,
    则,即=或2,即=或2,
    解得:m=1或﹣2(舍去)或或(舍去),
    经检验m=1或是方程的解,
    故m=1或.
    八.全等三角形的判定与性质(共1小题)
    11.(2020•烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.
    【问题解决】
    如图1,若点D在边BC上,求证:CE+CF=CD;
    【类比探究】
    如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.

    【解答】【问题解决】证明:在CD上截取CH=CE,如图1所示:
    ∵△ABC是等边三角形,
    ∴∠ECH=60°,
    ∴△CEH是等边三角形,
    ∴EH=EC=CH,∠CEH=60°,
    ∵△DEF是等边三角形,
    ∴DE=FE,∠DEF=60°,
    ∴∠DEH+∠HEF=∠FEC+∠HEF=60°,
    ∴∠DEH=∠FEC,
    在△DEH和△FEC中,

    ∴△DEH≌△FEC(SAS),
    ∴DH=CF,
    ∴CD=CH+DH=CE+CF,
    ∴CE+CF=CD;
    【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:
    ∵△ABC是等边三角形,
    ∴∠A=∠B=60°,
    过D作DG∥AB,交AC的延长线于点G,如图2所示:
    ∵GD∥AB,
    ∴∠GDC=∠B=60°,∠DGC=∠A=60°,
    ∴∠GDC=∠DGC=60°,
    ∴△GCD为等边三角形,
    ∴DG=CD=CG,∠GDC=60°,
    ∵△EDF为等边三角形,
    ∴ED=DF,∠EDF=∠GDC=60°,
    ∴∠EDG=∠FDC,
    在△EGD和△FCD中,

    ∴△EGD≌△FCD(SAS),
    ∴EG=FC,
    ∴FC=EG=CG+CE=CD+CE.


    九.平行四边形的性质(共1小题)
    12.(2022•烟台)如图,在▱ABCD中,DF平分∠ADC,交AB于点F,BE∥DF,交AD的延长线于点E.若∠A=40°,求∠ABE的度数.

    【解答】解:∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠A+∠ADC=180°,
    ∵∠A=40°,
    ∴∠ADC=140°,
    ∵DF平分∠ADC,
    ∴∠CDF=ADC=70°,
    ∴∠AFD=∠CDF=70°,
    ∵DF∥BE,
    ∴∠ABE=∠AFD=70°.
    一十.四边形综合题(共1小题)
    13.(2021•烟台)有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和AD上,连接BF,DE,M是BF的中点,连接AM交DE于点N.
    【观察猜想】
    (1)线段DE与AM之间的数量关系是  DE=2AM ,位置关系是  DE⊥AM ;
    【探究证明】
    (2)将图1中的正方形AEGF绕点A顺时针旋转45°,点G恰好落在边AB上,如图2,其他条件不变,线段DE与AM之间的关系是否仍然成立?并说明理由.

    【解答】解:(1)∵四边形ABCD和四边形AEGF都是正方形,
    ∴AD=AB,AF=AE,∠DAE=∠BAF=90°,
    ∴△DAE≌△BAF(SAS),
    ∴DE=BF,∠ADE=∠ABF,
    ∵∠ABF+∠AFB=90°,
    ∴∠ADE+∠AFB=90°,
    在Rt△BAF中,M是BF的中点,
    ∴AM=FM=BM=BF,
    ∴DE=2AM.
    ∵AM=FM,
    ∴∠AFB=∠MAF,
    又∵∠ADE+∠AFB=90°,
    ∴∠ADE+∠MAF=90°,
    ∴∠AND=180°﹣(∠ADE+∠MAF)=90°,
    即AN⊥DN;
    故答案为DE=2AM,DE⊥AM.
    (2)仍然成立,
    证明如下:延长AM至点H,使得AM=MH,连接FH,

    ∵M是BF的中点,
    ∴BM=FM,
    又∵∠AMB=∠HMF,
    ∴△AMB≌△HMF(SAS),
    ∴AB=HF,∠ABM=∠HFM,
    ∴AB∥HF,
    ∴∠HFG=∠AGF,
    ∵四边形ABCD和四边形AEGF是正方形,
    ∴∠DAB=∠AFG=90°,AE=AF,AD=AB=FH,∠EAG=∠AGF,
    ∴∠EAD=∠EAG+∠DAB=∠AFG+∠AGF=∠AFG+∠HFG=∠AFH,
    ∴△EAD≌△AFH(SAS),
    ∴DE=AH,
    又∵AM=MH,
    ∴DE=AM+MH=2AM,
    ∵△EAD≌△AFH,
    ∴∠ADE=∠FHA,
    ∵△AMB≌△HMF,
    ∴∠FHA=∠BAM,
    ∴∠ADE=∠BAM,
    又∵∠BAM+∠DAM=∠DAB=90°,
    ∴∠ADE+∠DAM=90°,
    ∴∠AND=180°﹣(∠ADE+∠DAM)=90°,
    即AN⊥DN.
    故线段DE与AM之间的数量关系是DE=2AM.线段DE与AM之间的位置关系是DE⊥AM.
    一十一.切线的判定与性质(共1小题)
    14.(2020•烟台)如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.
    (1)求证:EC是⊙O的切线;
    (2)若AD=2,求的长(结果保留π).

    【解答】(1)证明:连接OB,连接OM,
    ∵四边形ABCD是平行四边形,
    ∴∠ABC=∠D=60°,
    ∵AC⊥BC,
    ∴∠ACB=90°,
    ∴∠BAC=30°,
    ∵BE=AB,
    ∴∠E=∠BAE,
    ∵∠ABC=∠E+∠BAE=60°,
    ∴∠E=∠BAE=30°,
    ∵OA=OB,
    ∴∠ABO=∠OAB=30°,
    ∴∠OBC=30°+60°=90°,
    ∴OB⊥CE,
    ∴EC是⊙O的切线;
    (2)解:∵四边形ABCD是平行四边形,
    ∴BC=AD=2,
    过O作OH⊥AM于H,
    则四边形OBCH是矩形,
    ∴OH=BC=2,
    ∴OA==4,∠AOM=2∠AOH=60°,
    ∴的长度==.

    一十二.圆的综合题(共1小题)
    15.(2021•烟台)如图,已知Rt△ABC中,∠C=90°.
    (1)请按如下要求完成尺规作图(不写作法,保留作图痕迹).
    ①作∠BAC的角平分线AD,交BC于点D;
    ②作线段AD的垂直平分线EF与AB相交于点O;
    ③以点O为圆心,以OD长为半径画圆,交边AB于点M.
    (2)在(1)的条件下,求证:BC是⊙O的切线;
    (3)若AM=4BM,AC=10,求⊙O的半径.

    【解答】解:(1)如图所示,

    ①以A为圆心,以任意长度为半径画弧,与AC、AB相交,再以两个交点为圆心,以大于两点之间距离的一半为半径画弧相交于∠BAC内部一点,将点A与它连接并延长,与BC交于点D,则AD为∠BAC的平分线;
    ②分别以点A、点D为圆心,以大于AD长度为半径画圆,将两圆交点连接,则EF为AD的垂直平分线,EF与AB交于点O;
    ③如图,⊙O与AB交于点M;
    (2)证明:∵EF是AD的垂直平分线,且点O在EF上,
    ∴OA=OD,
    ∴∠OAD=∠ODA,
    ∵AD是∠BAC的平分线,
    ∴∠OAD=∠CAD,
    ∴∠ODA=∠CAD,
    ∴OD∥AC,
    ∵AC⊥BC,
    ∴OD⊥BC,
    故BC是⊙O的切线.
    (3)根据题意可知OM=OA=OD=AM,AM=4BM,
    ∴OM=2BM,BO=3BM,AB=5BM,
    ∴==,
    由(2)可知Rt△BOD与Rt△BAC有公共角∠B,
    ∴Rt△BOD∽Rt△BAC,
    ∴=,即=,解得DO=6,
    故⊙O的半径为6.
    一十三.作图—复杂作图(共1小题)
    16.(2022•烟台)如图,⊙O是△ABC的外接圆,∠ABC=45°.
    (1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);
    (2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.

    【解答】解:(1)如图,切线AD即为所求;


    (2)连接OB,OC.
    ∵AD是切线,
    ∴OA⊥AD,
    ∴∠OAD=90°,
    ∵∠DAB=75°,
    ∴∠OAB=15°,
    ∵OA=OB,
    ∴∠OAB=∠OBA=15°,
    ∴∠BOA=150°,
    ∴∠BCA=∠AOB=75°,
    ∵∠ABC=45°,
    ∴∠BAC=180°﹣45°﹣75°=60°,
    ∴∠BOC=2∠BAC=120°,
    ∵OB=OC=2,
    ∴∠BCO=∠CBO=30°,
    ∵OH⊥BC,
    ∴CH=BH=OC•cos30°=,
    ∴BC=2.
    一十四.相似形综合题(共1小题)
    17.(2022•烟台)【问题呈现】
    如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.
    【类比探究】
    如图2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出的值.
    【拓展提升】
    如图3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且==.连接BD,CE.
    (1)求的值;
    (2)延长CE交BD于点F,交AB于点G.求sin∠BFC的值.


    【解答】【问题呈现】证明:∵△ABC和△ADE都是等边三角形,
    ∴AD=AE,AB=AC,∠DAE=∠BAC=60°,
    ∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,
    ∴∠BAD=∠CAE,
    ∴△BAD≌△CAE(SAS),
    ∴BD=CE;
    【类比探究】解:∵△ABC和△ADE都是等腰直角三角形,
    ∴==,∠DAE=∠BAC=45°,
    ∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,
    ∴∠BAD=∠CAE,
    ∴△BAD∽△CAE,
    ∴==;
    【拓展提升】解:(1)∵==,∠ABC=∠ADE=90°,
    ∴△ABC∽△ADE,
    ∴∠BAC=∠DAE,,
    ∴∠CAE=∠BAD,
    ∴△CAE∽△BAD,
    ∴==;
    (2)由(1)得:△CAE∽△BAD,
    ∴∠ACE=∠ABD,
    ∵∠AGC=∠BGF,
    ∴∠BFC=∠BAC,
    ∴sin∠BFC==.
    一十五.解直角三角形的应用(共1小题)
    18.(2020•烟台)今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.

    (1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:
    测量对象
    男性(18~60岁)
    女性(18~55岁)
    抽样人数(人)
    2000
    5000
    20000
    2000
    5000
    20000
    平均身高(厘米)
    173
    175
    176
    164
    165
    164
    根据你所学的知识,若要更准确地表示这一地区男、女的平均身高,男性应采用  176 厘米,女性应采用  164 厘米;
    (2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点P距地面105厘米.指示牌挂在两臂杆AB,AC的连接点A处,A点距地面110厘米.臂杆落下时两端点B,C在同一水平线上,BC=100厘米,点C在点P的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.
    (参考数据表)
    计算器按键顺序
    计算结果(近似值)
    计算器按键顺序
    计算结果(近似值)

    0.1

    78.7

    0.2

    84.3

    1.7

    5.7

    3.5

    11.3
    【解答】解:(1)用表格可知,男性应采用176厘米,女性应采用164厘米.
    故答案为176,164.

    (2)如图2中,∵AB=AC,AF⊥BC,
    ∴BF=FC=50cm,∠FAC=∠FAB,
    由题意AF=10cm,
    ∴tan∠FAC===5,
    ∴∠FAC≈78.7°,
    ∴∠BAC=2∠FAC≈157.4°,
    答:两臂杆的夹角约为157.4°
    一十六.解直角三角形的应用-坡度坡角问题(共1小题)
    19.(2022•烟台)如图,某超市计划将门前的部分楼梯改造成无障碍通道.已知楼梯共有五级均匀分布的台阶,高AB=0.75m,斜坡AC的坡比为1:2,将要铺设的通道前方有一井盖,井盖边缘离楼梯底部的最短距离ED=2.55m.为防止通道遮盖井盖,所铺设通道的坡角不得小于多少度?(结果精确到1)

    (参考数据表)
    计算器按键顺序
    计算结果(已精确到0.001)

    11.310

    0.003

    14.744

    0.005
    【解答】解:如图:

    由题意得:
    DF=AB=0.15(米),
    ∵斜坡AC的坡比为1:2,
    ∴=,=,
    ∴BC=2AB=1.5(米),CD=2DF=0.3(米),
    ∵ED=2.55米,
    ∴EB=ED+BC﹣CD=2.55+1.5﹣0.3=3.75(米),
    在Rt△AEB中,tan∠AEB===,
    查表可得,∠AEB≈11.310°≈11°,
    ∴为防止通道遮盖井盖,所铺设通道的坡角不得小于11度.
    一十七.统计图的选择(共1小题)
    20.(2022•烟台)2021年4月,教育部办公厅在《关于进一步加强中小学生体质健康管理工作的通知》中明确要求保障学生每天校内、校外各1小时体育活动时间.某校为了解本校学生校外体育活动情况,随机对本校100名学生某天的校外体育活动时间进行了调查,并按照体育活动时间分A,B,C,D四组整理如下:
    组别
    体育活动时间/分钟
    人数
    A
    0≤x<30
    10
    B
    30≤x<60
    20
    C
    60≤x<90
    60
    D
    x≥90
    10
    根据以上信息解答下列问题:
    (1)制作一个适当的统计图,表示各组人数占所调查人数的百分比;
    (2)小明记录了自己一周内每天的校外体育活动时间,制作了如下折线统计图.请计算小明本周内平均每天的校外体育活动时间;
    (3)若该校共有1400名学生,请估计该校每天校外体育活动时间不少于1小时的学生人数.

    【解答】解:(1)由于各组人数占所调查人数的百分比,因此可以采用扇形统计图;

    (2)=64(分),
    答:小明本周内平均每天的校外体育活动时间为64分钟;
    (3)1400×=980(名),
    答:该校1400名学生中,每天校外体育活动时间不少于1小时的大约有980名.
    一十八.列表法与树状图法(共2小题)
    21.(2021•烟台)2021年是中国共产党成立100周年.为普及党史知识,培养爱国主义精神,今年五月份,某市党校举行党史知识竞赛,每个班级各选派15名学员参加了网上测试,现对甲、乙两班学员的分数进行整理分析如下:
    甲班15名学员测试成绩(满分100分)统计如下:
    87,84,88,76,93,87,73,98,86,87,79,85,84,85,98.
    乙班15名学员测试成绩(满分100分)统计如下:
    77,88,92,85,76,90,76,91,88,81,85,88,98,86,89
    (1)按如表分数段整理两班测试成绩
    班级
    70.5~75.5
    75.5~80.5
    80.5~85.5
    85.5~90.5
    90.5~95.5
    95.5~100.5

    1
    2
    a
    5
    1
    2

    0
    3
    3
    6
    2
    1
    表中a= 4 ;
    (2)补全甲班15名学员测试成绩的频数分布直方图;

    (3)两班测试成绩的平均数、众数、中位数、方差如表所示:
    班级
    平均数
    众数
    中位数
    方差

    86
    x
    86
    44.8

    86
    88
    y
    36.7
    表中x= 87 ,y= 88 .
    (4)以上两个班级学员掌握党史相关知识的整体水平较好的是  乙 班;
    (5)本次测试两班的最高分都是98分,其中甲班2人,乙班1人.现从以上三人中随机抽取两人代表党校参加全市党史知识竞赛,利用树状图或表格求出恰好抽取甲、乙两班各一人参加全市党史知识竞赛的概率.

    【解答】解:(1)由题意得:a=4,
    故答案为:4;
    (2)补全甲班15名学员测试成绩的频数分布直方图如下:

    (3)甲班15名学员测试成绩中,87分出现的次数最多,
    ∴x=87,由题意得:乙班15名学员测试成绩的中位数为88,
    故答案为:87,88;
    (4)以上两个班级学员掌握党史相关知识的整体水平较好的是乙班,理由如下:
    ①甲、乙两个班的平均数相等,但乙班的中位数大于甲班的中位数;
    ②乙班的方差小于甲班的方差,因此乙班的成绩更稳定;
    故答案为:乙;
    (5)把甲班2人记为A、B,乙班1人记为C,
    画树状图如图:

    共有6种等可能的结果,恰好抽取甲、乙两班各一人参加全市党史知识竞赛的结果有4种,
    ∴恰好抽取甲、乙两班各一人参加全市党史知识竞赛的概率为=.
    22.(2020•烟台)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:
    (1)此次共调查了多少名学生?
    (2)将条形统计图补充完整;
    (3)我们把“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.

    【解答】解:(1)此次共调查的学生有:40÷=200(名);

    (2)最喜欢足球的人数有:200﹣40﹣60﹣20﹣30=50(人),补全统计图如下:

    (3)根据题意画树状图如下:

    共有25种等可能的情况数,其中他俩选择不同项目的有20种,
    则他俩选择不同项目的概率是=.

    相关试卷

    山东省烟台市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类:

    这是一份山东省烟台市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共31页。试卷主要包含了【问题背景】,【问题呈现】等内容,欢迎下载使用。

    山东省烟台市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类:

    这是一份山东省烟台市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共17页。试卷主要包含了先化简,再求值,直播购物逐渐走进了人们的生活等内容,欢迎下载使用。

    山东省潍坊市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类:

    这是一份山东省潍坊市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类,共46页。试卷主要包含了÷,其中x是16的算术平方根,,如图,与点C关于y轴对称,【情境再现】等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map