|试卷下载
终身会员
搜索
    上传资料 赚现金
    安徽省三年(2020-2022)中考数学真题按题型分类汇编:03解答题基础题知识点分类
    立即下载
    加入资料篮
    安徽省三年(2020-2022)中考数学真题按题型分类汇编:03解答题基础题知识点分类01
    安徽省三年(2020-2022)中考数学真题按题型分类汇编:03解答题基础题知识点分类02
    安徽省三年(2020-2022)中考数学真题按题型分类汇编:03解答题基础题知识点分类03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省三年(2020-2022)中考数学真题按题型分类汇编:03解答题基础题知识点分类

    展开
    这是一份安徽省三年(2020-2022)中考数学真题按题型分类汇编:03解答题基础题知识点分类,共17页。试卷主要包含了观察以下等式,某超市有线上和线下两种销售方式,解不等式,的对称轴为直线x=1等内容,欢迎下载使用。

    安徽省三年(2020-2022)中考数学真题按题型分类汇编:03解答题基础题知识点分类
    一.规律型:数字的变化类(共1小题)
    1.(2020•安徽)观察以下等式:
    第1个等式:13×(1+21)=2−11,
    第2个等式:34×(1+22)=2−12,
    第3个等式:55×(1+23)=2−13,
    第4个等式:76×(1+24)=2−14.
    第5个等式:97×(1+25)=2−15.

    按照以上规律,解决下列问题:
    (1)写出第6个等式:   ;
    (2)写出你猜想的第n个等式:   (用含n的等式表示),并证明.
    二.零指数幂(共1小题)
    2.(2022•安徽)计算:(12)0−16+(﹣2)2.
    三.一元一次方程的应用(共1小题)
    3.(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.
    (1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);
    时间
    销售总额(元)
    线上销售额(元)
    线下销售额(元)
    2019年4月份
    a
    x
    a﹣x
    2020年4月份
    1.1a
    1.43x
       
    (2)求2020年4月份线上销售额与当月销售总额的比值.
    四.二元一次方程组的应用(共1小题)
    4.(2022•安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.
    注:进出口总额=进口额+出口额.
    (1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:
    年份
    进口额/亿元
    出口额/亿元
    进出口总额/亿元
    2020
    x
    y
    520
    2021
    1.25x
    1.3y
       
    (2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?
    五.解一元一次不等式(共2小题)
    5.(2020•安徽)解不等式:2x−12>1.
    6.(2021•安徽)解不等式:x−13−1>0.
    六.反比例函数与一次函数的交点问题(共1小题)
    7.(2021•安徽)已知正比例函数y=kx(k≠0)与反比例函数y=6x的图象都经过点A(m,2).

    (1)求k,m的值;
    (2)在图中画出正比例函数y=kx的图象,并根据图象,写出正比例函数值大于反比例函数值时x的取值范围.
    七.二次函数的性质(共1小题)
    8.(2021•安徽)已知抛物线y=ax2﹣2x+1(a≠0)的对称轴为直线x=1.
    (1)求a的值;
    (2)若点M(x1,y1),N(x2,y2)都在此抛物线上,且﹣1<x1<0,1<x2<2.比较y1与y2的大小,并说明理由;
    (3)设直线y=m(m>0)与抛物线y=ax2﹣2x+1交于点A、B,与抛物线y=3(x﹣1)2交于点C,D,求线段AB与线段CD的长度之比.
    八.圆周角定理(共1小题)
    9.(2021•安徽)如图,圆O中两条互相垂直的弦AB,CD交于点E.
    (1)M是CD的中点,OM=3,CD=12,求圆O的半径长;
    (2)点F在CD上,且CE=EF,求证:AF⊥BD.

    九.作图-旋转变换(共1小题)
    10.(2022•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).
    (1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;
    (2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.

    一十.解直角三角形的应用(共1小题)
    11.(2021•安徽)学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD为矩形,点B、C分别在EF、DF上,∠ABC=90°,∠BAD=53°,AB=10cm,BC=6cm.求零件的截面面积.参考数据:sin53°≈0.80,cos53°≈0.60.

    一十一.解直角三角形的应用-仰角俯角问题(共1小题)
    12.(2020•安徽)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).
    (参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)

    一十二.频数(率)分布直方图(共1小题)
    13.(2021•安徽)为了解全市居民用户用电情况,某部门从居民用户中随机抽取100户进行月用电量(单位:kW•h)调查,按月用电量50~100,100~150,150~200,200~250,250~300,300~350进行分组,绘制频数分布直方图如图.

    (1)求频数分布直方图中x的值;
    (2)判断这100户居民用户月用电量数据的中位数在哪一组(直接写出结果);
    (3)设各组居民用户月平均用电量如表:
    组别
    50~100
    100~150
    150~200
    200~250
    250~300
    300~350
    月平均用电量(单位:kW•h)
    75
    125
    175
    225
    275
    325
    根据上述信息,估计该市居民用户月用电量的平均数.
    一十三.列表法与树状图法(共1小题)
    14.(2020•安徽)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:

    (1)在抽取的240人中最喜欢A套餐的人数为   ,扇形统计图中“C”对应扇形的圆心角的大小为   °;
    (2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;
    (3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.

    参考答案与试题解析
    一.规律型:数字的变化类(共1小题)
    1.(2020•安徽)观察以下等式:
    第1个等式:13×(1+21)=2−11,
    第2个等式:34×(1+22)=2−12,
    第3个等式:55×(1+23)=2−13,
    第4个等式:76×(1+24)=2−14.
    第5个等式:97×(1+25)=2−15.

    按照以上规律,解决下列问题:
    (1)写出第6个等式: 118×(1+26)=2−16 ;
    (2)写出你猜想的第n个等式: 2n−1n+2×(1+2n)=2−1n (用含n的等式表示),并证明.
    【解答】解:(1)第6个等式:118×(1+26)=2−16;
    (2)猜想的第n个等式:2n−1n+2×(1+2n)=2−1n.
    证明:∵左边=2n−1n+2×n+2n=2n−1n=2−1n=右边,
    ∴等式成立.
    故答案为:118×(1+26)=2−16;2n−1n+2×(1+2n)=2−1n.
    二.零指数幂(共1小题)
    2.(2022•安徽)计算:(12)0−16+(﹣2)2.
    【解答】解:原式=1﹣4+4=1.
    三.一元一次方程的应用(共1小题)
    3.(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.
    (1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);
    时间
    销售总额(元)
    线上销售额(元)
    线下销售额(元)
    2019年4月份
    a
    x
    a﹣x
    2020年4月份
    1.1a
    1.43x
     1.04(a﹣x) 
    (2)求2020年4月份线上销售额与当月销售总额的比值.
    【解答】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,
    ∴该超市2020年4月份线下销售额为1.04(a﹣x)元.
    故答案为:1.04(a﹣x).
    (2)依题意,得:1.1a=1.43x+1.04(a﹣x),
    解得:x=213a,
    ∴1.43x1.1a=1.43×213a1.1a=0.22a1.1a=0.2.
    答:2020年4月份线上销售额与当月销售总额的比值为0.2.
    四.二元一次方程组的应用(共1小题)
    4.(2022•安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.
    注:进出口总额=进口额+出口额.
    (1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:
    年份
    进口额/亿元
    出口额/亿元
    进出口总额/亿元
    2020
    x
    y
    520
    2021
    1.25x
    1.3y
     1.25x+1.3y 
    (2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?
    【解答】解:(1)由表格可得,
    2021年进出口总额为:1.25x+1.3y,
    故答案为:1.25x+1.3y;
    (2)由题意可得,
    x+y=5201.25x+1.3y=520+140,
    解得x=320y=200,
    ∴1.25x=400,1.3y=260,
    答:2021年进口额是400亿元,出口额是260亿元.
    五.解一元一次不等式(共2小题)
    5.(2020•安徽)解不等式:2x−12>1.
    【解答】解:去分母,得:2x﹣1>2,
    移项,得:2x>2+1,
    合并,得:2x>3,
    系数化为1,得:x>32.
    6.(2021•安徽)解不等式:x−13−1>0.
    【解答】解:x−13−1>0,
    去分母,得
    x﹣1﹣3>0,
    移项及合并同类项,得
    x>4.
    六.反比例函数与一次函数的交点问题(共1小题)
    7.(2021•安徽)已知正比例函数y=kx(k≠0)与反比例函数y=6x的图象都经过点A(m,2).

    (1)求k,m的值;
    (2)在图中画出正比例函数y=kx的图象,并根据图象,写出正比例函数值大于反比例函数值时x的取值范围.
    【解答】解:(1)将点A坐标代入反比例函数得:2m=6.
    ∴m=3.
    ∴A(3,2)
    将点A坐标代入正比例函数得:2=3k.
    ∴k=23.
    (2)如图:

    ∴正比例函数值大于反比例函数值时x的取值范围:x>3或﹣3<x<0.
    七.二次函数的性质(共1小题)
    8.(2021•安徽)已知抛物线y=ax2﹣2x+1(a≠0)的对称轴为直线x=1.
    (1)求a的值;
    (2)若点M(x1,y1),N(x2,y2)都在此抛物线上,且﹣1<x1<0,1<x2<2.比较y1与y2的大小,并说明理由;
    (3)设直线y=m(m>0)与抛物线y=ax2﹣2x+1交于点A、B,与抛物线y=3(x﹣1)2交于点C,D,求线段AB与线段CD的长度之比.
    【解答】解:(1)根据题意可知,抛物线y=ax2﹣2x+1(a≠0)的对称轴为直线:x=−b2a=1a=1,
    ∴a=1.
    (2)由(1)可知,抛物线的解析式为:y=x2﹣2x+1=(x﹣1)2,
    ∵a=1>0,
    ∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,
    ∵﹣1<x1<0,1<x2<2,
    ∴1<1﹣x1<2,0<x2﹣1<1,
    结合函数图象可知,当抛物线开口向上时,距离对称轴越远,值越大,
    ∴y1>y2.
    (3)联立y=m(m>0)与y=x2﹣2x+1=(x﹣1)2,可得A(1+m,m),B(1−m,m),
    ∴AB=2m,
    联立y=m(m>0)与y=3(x﹣1)2,可得C(1+m3,m),D(1−m3,m),
    ∴CD=2×m3=233m,
    ∴ABCD=3.
    八.圆周角定理(共1小题)
    9.(2021•安徽)如图,圆O中两条互相垂直的弦AB,CD交于点E.
    (1)M是CD的中点,OM=3,CD=12,求圆O的半径长;
    (2)点F在CD上,且CE=EF,求证:AF⊥BD.

    【解答】解:(1)连接OD,如图:

    ∵M是CD的中点,CD=12,
    ∴DM=12CD=6,OM⊥CD,∠OMD=90°,
    Rt△OMD中,OD=OM2+DM2,且OM=3,
    ∴OD=32+62=35,即圆O的半径长为35;
    (2)连接AC,延长AF交BD于G,如图:

    ∵AB⊥CD,CE=EF,
    ∴AB是CF的垂直平分线,
    ∴AF=AC,即△ACF是等腰三角形,
    ∵CE=EF,
    ∴∠FAE=∠CAE,
    ∵BC=BC,
    ∴∠CAE=∠CDB,
    ∴∠FAE=∠CDB,
    Rt△BDE中,∠CDB+∠B=90°,
    ∴∠FAE+∠B=90°,
    ∴∠AGB=90°,
    ∴AG⊥BD,即AF⊥BD.
    九.作图-旋转变换(共1小题)
    10.(2022•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).
    (1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;
    (2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.

    【解答】解:(1)如图,△A1B1C1即为所求;
    (2)如图,△A2B2C2即为所求.

    一十.解直角三角形的应用(共1小题)
    11.(2021•安徽)学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD为矩形,点B、C分别在EF、DF上,∠ABC=90°,∠BAD=53°,AB=10cm,BC=6cm.求零件的截面面积.参考数据:sin53°≈0.80,cos53°≈0.60.

    【解答】解:如图,
    ∵四边形AEFD为矩形,∠BAD=53°,
    ∴AD∥EF,∠E=∠F=90°,
    ∴∠BAD=∠EBA=53°,
    在Rt△ABE中,∠E=90°,AB=10cm,∠EBA=53°,
    ∴sin∠EBA=AEAB≈0.80,cos∠EBA=BEAB≈0.60,
    ∴AE=8cm,BE=6cm,
    ∵∠ABC=90°,
    ∴∠FBC=90°﹣∠EBA=37°,
    ∴∠BCF=90°﹣∠FBC=53°,
    在Rt△BCF中,∠F=90°,BC=6cm,
    ∴sin∠BCF=BFBC≈0.80,cos∠BCF=FCBC≈0.60,
    ∴BF=4.8cm,FC=3.6cm,
    ∴EF=6+4.8=10.8cm,
    ∴S四边形EFDA=AE•EF=8×10.8=86.4(cm2),
    S△ABE=12⋅AE⋅BE=12×8×6=24(cm2),
    S△BCF=12•BF•CF=12×4.8×3.6=8.64(cm2),
    ∴截面的面积=S四边形EFDA﹣S△ABE﹣S△BCF=86.4﹣24﹣8.64=53.76(cm2).

    一十一.解直角三角形的应用-仰角俯角问题(共1小题)
    12.(2020•安徽)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).
    (参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)

    【解答】解:由题意,在Rt△ABD中,tan∠ABD=ADBD,
    ∴tan42.0°=ADBD≈0.9,
    ∴AD≈0.9BD,
    在Rt△BCD中,tan∠CBD=CDBD,
    ∴tan36.9°=CDBD≈0.75,
    ∴CD≈0.75BD,
    ∵AC=AD﹣CD,
    ∴15=0.15BD,
    ∴BD=100(米),
    ∴CD=0.75BD=75(米),
    答:山高CD为75米.
    一十二.频数(率)分布直方图(共1小题)
    13.(2021•安徽)为了解全市居民用户用电情况,某部门从居民用户中随机抽取100户进行月用电量(单位:kW•h)调查,按月用电量50~100,100~150,150~200,200~250,250~300,300~350进行分组,绘制频数分布直方图如图.

    (1)求频数分布直方图中x的值;
    (2)判断这100户居民用户月用电量数据的中位数在哪一组(直接写出结果);
    (3)设各组居民用户月平均用电量如表:
    组别
    50~100
    100~150
    150~200
    200~250
    250~300
    300~350
    月平均用电量(单位:kW•h)
    75
    125
    175
    225
    275
    325
    根据上述信息,估计该市居民用户月用电量的平均数.
    【解答】解:(1)x=100﹣12﹣18﹣30﹣12﹣6=22(户),
    答:x的值为22;
    (2)将这100户的用电量从小到大排列,处在中间位置的两个数都落在150~200这一组,
    所以这100户居民用户月用电量数据的中位数在150~200这一组;
    (3)估计该市居民用户月用电量的平均数为75×12+125×18+175×30+225×22+275×12+325×6100=186(kW•h),
    答:估计该市居民用户月用电量的平均数为186kW•h.
    一十三.列表法与树状图法(共1小题)
    14.(2020•安徽)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:

    (1)在抽取的240人中最喜欢A套餐的人数为 60 ,扇形统计图中“C”对应扇形的圆心角的大小为 108 °;
    (2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;
    (3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.
    【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),
    则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),
    ∴扇形统计图中“C”对应扇形的圆心角的大小为360°×72240=108°,
    故答案为:60、108;
    (2)估计全体960名职工中最喜欢B套餐的人数为960×84240=336(人);
    (3)画树状图为:

    共有12种等可能的结果数,其中甲被选到的结果数为6,
    ∴甲被选到的概率为612=12.
    相关试卷

    广东省深圳市三年(2020-2022)中考数学真题分类汇编-03解答题基础题知识点分类: 这是一份广东省深圳市三年(2020-2022)中考数学真题分类汇编-03解答题基础题知识点分类,共13页。试卷主要包含了﹣1,÷,其中x=4,÷,其中x=﹣1,,其中a=2,的关系如表所示等内容,欢迎下载使用。

    安徽省三年(2020-2022)中考数学真题按题型分类汇编:04解答题提升题知识点分类: 这是一份安徽省三年(2020-2022)中考数学真题按题型分类汇编:04解答题提升题知识点分类,共23页。试卷主要包含了观察以下等式,是抛物线的顶点等内容,欢迎下载使用。

    北京市三年(2020-2022)中考数学真题按题型分类汇编:03解答题容易题知识点分类: 这是一份北京市三年(2020-2022)中考数学真题按题型分类汇编:03解答题容易题知识点分类,共8页。试卷主要包含了的值,解不等式组,已知,,相关信息如下等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map