03解答题知识点分类-安徽省五年(2018-2022)中考数学真题分类汇编
展开03解答题知识点分类-安徽省五年(2018-2022)中考数学真题分类汇编
一.实数的运算(共1小题)
1.(2018•安徽)计算:50﹣(﹣2)+×.
二.规律型:数字的变化类(共4小题)
2.(2022•安徽)观察以下等式:
第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,
第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,
第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,
第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,
……
按照以上规律,解决下列问题:
(1)写出第5个等式: ;
(2)写出你猜想的第n个等式(用含n的式子表示),并证明.
3.(2020•安徽)观察以下等式:
第1个等式:×(1+)=2﹣,
第2个等式:×(1+)=2﹣,
第3个等式:×(1+)=2﹣,
第4个等式:×(1+)=2﹣.
第5个等式:×(1+)=2﹣.
…
按照以上规律,解决下列问题:
(1)写出第6个等式: ;
(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.
4.(2019•安徽)观察以下等式:
第1个等式:=+,
第2个等式:=+,
第3个等式:=+,
第4个等式:=+,
第5个等式:=+,
……
按照以上规律,解决下列问题:
(1)写出第6个等式: ;
(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.
5.(2018•安徽)观察以下等式:
第1个等式:++×=1,
第2个等式:++×=1,
第3个等式:++×=1,
第4个等式:++×=1,
第5个等式:++×=1,
……
按照以上规律,解决下列问题:
(1)写出第6个等式: ;
(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.
三.零指数幂(共1小题)
6.(2022•安徽)计算:()0﹣+(﹣2)2.
四.一元一次方程的应用(共3小题)
7.(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.
(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);
时间
销售总额(元)
线上销售额(元)
线下销售额(元)
2019年4月份
a
x
a﹣x
2020年4月份
1.1a
1.43x
(2)求2020年4月份线上销售额与当月销售总额的比值.
8.(2019•安徽)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?
9.(2018•安徽)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?
五.二元一次方程组的应用(共1小题)
10.(2022•安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.
注:进出口总额=进口额+出口额.
(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:
年份
进口额/亿元
出口额/亿元
进出口总额/亿元
2020
x
y
520
2021
1.25x
1.3y
(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?
六.解一元二次方程-直接开平方法(共1小题)
11.(2019•安徽)解方程:(x﹣1)2=4.
七.解一元一次不等式(共2小题)
12.(2021•安徽)解不等式:﹣1>0.
13.(2020•安徽)解不等式:>1.
八.反比例函数与一次函数的交点问题(共1小题)
14.(2021•安徽)已知正比例函数y=kx(k≠0)与反比例函数y=的图象都经过点A(m,2).
(1)求k,m的值;
(2)在图中画出正比例函数y=kx的图象,并根据图象,写出正比例函数值大于反比例函数值时x的取值范围.
九.二次函数的性质(共2小题)
15.(2021•安徽)已知抛物线y=ax2﹣2x+1(a≠0)的对称轴为直线x=1.
(1)求a的值;
(2)若点M(x1,y1),N(x2,y2)都在此抛物线上,且﹣1<x1<0,1<x2<2.比较y1与y2的大小,并说明理由;
(3)设直线y=m(m>0)与抛物线y=ax2﹣2x+1交于点A、B,与抛物线y=3(x﹣1)2交于点C,D,求线段AB与线段CD的长度之比.
16.(2019•安徽)一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点.
(1)求k,a,c的值;
(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.
一十.二次函数图象与几何变换(共1小题)
17.(2020•安徽)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.
(1)判断点B是否在直线y=x+m上,并说明理由;
(2)求a,b的值;
(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.
一十一.二次函数的应用(共1小题)
18.(2018•安徽)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:
①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;
②花卉的平均每盆利润始终不变.
小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为w1,w2(单位:元).
(1)用含x的代数式分别表示w1,w2;
(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润w最大,最大总利润是多少?
一十二.二次函数综合题(共1小题)
19.(2022•安徽)如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.
(1)求此抛物线对应的函数表达式;
(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:
(ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值;
(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).
一十三.三角形综合题(共1小题)
20.(2018•安徽)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.
(1)求证:CM=EM;
(2)若∠BAC=50°,求∠EMF的大小;
(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.
一十四.平行四边形的性质(共1小题)
21.(2019•安徽)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.
(1)求证:△BCE≌△ADF;
(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.
一十五.四边形综合题(共4小题)
22.(2022•安徽)已知四边形ABCD中,BC=CD,连接BD,过点C作BD的垂线交AB于点E,连接DE.
(1)如图1,若DE∥BC,求证:四边形BCDE是菱形;
(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.
(ⅰ)求∠CED的大小;
(ⅱ)若AF=AE,求证:BE=CF.
23.(2021•安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.
[观察思考]
当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推.
[规律总结]
(1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加 块;
(2)若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为 (用含n的代数式表示).
[问题解决]
(3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?
24.(2021•安徽)如图1,在四边形ABCD中,∠ABC=∠BCD,点E在边BC上,且AE∥CD,DE∥AB,作CF∥AD交线段AE于点F,连接BF.
(1)求证:△ABF≌△EAD;
(2)如图2.若AB=9,CD=5,∠ECF=∠AED,求BE的长;
(3)如图3,若BF的延长线经过AD的中点M,求的值.
25.(2020•安徽)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.
(1)求证:BD⊥EC;
(2)若AB=1,求AE的长;
(3)如图2,连接AG,求证:EG﹣DG=AG.
一十六.圆周角定理(共1小题)
26.(2021•安徽)如图,圆O中两条互相垂直的弦AB,CD交于点E.
(1)M是CD的中点,OM=3,CD=12,求圆O的半径长;
(2)点F在CD上,且CE=EF,求证:AF⊥BD.
一十七.切线的性质(共2小题)
27.(2022•安徽)已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.
(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;
(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE.求证:CE⊥AB.
28.(2020•安徽)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.
(1)求证:△CBA≌△DAB;
(2)若BE=BF,求证:AC平分∠DAB.
一十八.作图—复杂作图(共1小题)
29.(2018•安徽)如图,⊙O为锐角△ABC的外接圆,半径为5.
(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);
(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.
一十九.作图-平移变换(共1小题)
30.(2019•安徽)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.
(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.
(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)
二十.作图-旋转变换(共3小题)
31.(2022•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).
(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;
(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.
32.(2021•安徽)如图,在每个小正方形的边长为1个单位的网格中,△ABC的顶点均在格点(网格线的交点)上.
(1)将△ABC向右平移5个单位得到△A1B1C1,画出△A1B1C1;
(2)将(1)中的△A1B1C1绕点C1逆时针旋转90°得到△A2B2C1,画出△A2B2C1.
33.(2020•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.
(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);
(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.
二十一.相似三角形的判定与性质(共1小题)
34.(2019•安徽)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.
(1)求证:△PAB∽△PBC;
(2)求证:PA=2PC;
(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.
二十二.作图-位似变换(共1小题)
35.(2018•安徽)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.
(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;
(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;
(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是 个平方单位.
二十三.解直角三角形的应用(共2小题)
36.(2021•安徽)学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD为矩形,点B、C分别在EF、DF上,∠ABC=90°,∠BAD=53°,AB=10cm,BC=6cm.求零件的截面面积.参考数据:sin53°≈0.80,cos53°≈0.60.
37.(2019•安徽)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨道是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.
(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)
二十四.解直角三角形的应用-仰角俯角问题(共2小题)
38.(2020•安徽)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).
(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)
39.(2018•安徽)为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)
二十五.解直角三角形的应用-方向角问题(共1小题)
40.(2022•安徽)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.
参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.
二十六.频数(率)分布直方图(共1小题)
41.(2021•安徽)为了解全市居民用户用电情况,某部门从居民用户中随机抽取100户进行月用电量(单位:kW•h)调查,按月用电量50~100,100~150,150~200,200~250,250~300,300~350进行分组,绘制频数分布直方图如图.
(1)求频数分布直方图中x的值;
(2)判断这100户居民用户月用电量数据的中位数在哪一组(直接写出结果);
(3)设各组居民用户月平均用电量如表:
组别
50~100
100~150
150~200
200~250
250~300
300~350
月平均用电量(单位:kW•h)
75
125
175
225
275
325
根据上述信息,估计该市居民用户月用电量的平均数.
二十七.扇形统计图(共1小题)
42.(2022•安徽)第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生,为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x表示):
A:70≤x<75,B:75≤x<80,C:80≤x<85,
D:85≤x<90,E:90≤x<95,F:95≤x≤100,
并绘制七年级测试成绩频数分布直方图和八年级测试成绩扇形统计图,部分信息如下:
已知八年级测试成绩D组的全部数据如下:
86,85,87,86,85,89,88.
请根据以上信息,完成下列问题:
(1)n= ,a= ;
(2)八年级测试成绩的中位数是 ;
(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两个年级对冬奥会关注程度高的学生一共有多少人,并说明理由.
二十八.列表法与树状图法(共3小题)
43.(2020•安徽)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:
(1)在抽取的240人中最喜欢A套餐的人数为 ,扇形统计图中“C”对应扇形的圆心角的大小为 °;
(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;
(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.
44.(2019•安徽)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格:
编号
①
②
③
④
⑤
⑥
⑦
⑧
⑨
⑩
⑪
⑫
⑬
⑭
⑮
尺寸(cm)
8.72
8.88
8.92
8.93
8.94
8.96
8.97
8.98
a
9.03
9.04
9.06
9.07
9.08
b
按照生产标准,产品等次规定如下:
尺寸(单位:cm)
产品等次
8.97≤x≤9.03
特等品
8.95≤x≤9.05
优等品
8.90≤x≤9.10
合格品
x<8.90或x>9.10
非合格品
注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.
(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.
(2)已知此次抽检出的优等品尺寸的中位数为9cm.
(i)求a的值;
(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.
45.(2018•安徽)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数分布直方图.部分信息如下:
(1)本次比赛参赛选手共有 人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为 ;
(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;
(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.
参考答案与试题解析
一.实数的运算(共1小题)
1.(2018•安徽)计算:50﹣(﹣2)+×.
【解答】解:原式=1+2+4=7.
二.规律型:数字的变化类(共4小题)
2.(2022•安徽)观察以下等式:
第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,
第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,
第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,
第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,
……
按照以上规律,解决下列问题:
(1)写出第5个等式: (2×5+1)2=(6×10+1)2﹣(6×10)2 ;
(2)写出你猜想的第n个等式(用含n的式子表示),并证明.
【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,
第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,
第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,
第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,
第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,
故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;
(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,
证明:左边=4n2+4n+1,
右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2
=4n2+4n+1,
∴左边=右边.
3.(2020•安徽)观察以下等式:
第1个等式:×(1+)=2﹣,
第2个等式:×(1+)=2﹣,
第3个等式:×(1+)=2﹣,
第4个等式:×(1+)=2﹣.
第5个等式:×(1+)=2﹣.
…
按照以上规律,解决下列问题:
(1)写出第6个等式: ×(1+)=2﹣ ;
(2)写出你猜想的第n个等式: ×(1+)=2﹣ (用含n的等式表示),并证明.
【解答】解:(1)第6个等式:×(1+)=2﹣;
(2)猜想的第n个等式:×(1+)=2﹣.
证明:∵左边=×==2﹣=右边,
∴等式成立.
故答案为:×(1+)=2﹣;×(1+)=2﹣.
4.(2019•安徽)观察以下等式:
第1个等式:=+,
第2个等式:=+,
第3个等式:=+,
第4个等式:=+,
第5个等式:=+,
……
按照以上规律,解决下列问题:
(1)写出第6个等式: ;
(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.
【解答】解:(1)第6个等式为:,
故答案为:;
(2)
证明:∵右边==左边.
∴等式成立,
故答案为:.
5.(2018•安徽)观察以下等式:
第1个等式:++×=1,
第2个等式:++×=1,
第3个等式:++×=1,
第4个等式:++×=1,
第5个等式:++×=1,
……
按照以上规律,解决下列问题:
(1)写出第6个等式: ;
(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.
【解答】解:(1)根据已知规律,第6个分式分母为6和7,分子分别为1和5
故应填:
(2)根据题意,第n个分式分母为n和n+1,分子分别为1和n﹣1
故应填:
证明:=
∴等式成立
三.零指数幂(共1小题)
6.(2022•安徽)计算:()0﹣+(﹣2)2.
【解答】解:原式=1﹣4+4=1.
四.一元一次方程的应用(共3小题)
7.(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.
(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);
时间
销售总额(元)
线上销售额(元)
线下销售额(元)
2019年4月份
a
x
a﹣x
2020年4月份
1.1a
1.43x
1.04(a﹣x)
(2)求2020年4月份线上销售额与当月销售总额的比值.
【解答】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,
∴该超市2020年4月份线下销售额为1.04(a﹣x)元.
故答案为:1.04(a﹣x).
(2)依题意,得:1.1a=1.43x+1.04(a﹣x),
解得:x=a,
∴===0.2.
答:2020年4月份线上销售额与当月销售总额的比值为0.2.
8.(2019•安徽)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?
【解答】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米,
由题意,得2x+(x+x﹣2)=26,
解得x=7,
所以乙工程队每天掘进5米,
(天)
答:甲乙两个工程队还需联合工作10天.
9.(2018•安徽)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?
【解答】解:设城中有x户人家,
依题意得:x+=100
解得x=75.
答:城中有75户人家.
五.二元一次方程组的应用(共1小题)
10.(2022•安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.
注:进出口总额=进口额+出口额.
(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:
年份
进口额/亿元
出口额/亿元
进出口总额/亿元
2020
x
y
520
2021
1.25x
1.3y
1.25x+1.3y
(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?
【解答】解:(1)由表格可得,
2021年进出口总额为:1.25x+1.3y,
故答案为:1.25x+1.3y;
(2)由题意可得,
,
解得,
∴1.25x=400,1.3y=260,
答:2021年进口额是400亿元,出口额是260亿元.
六.解一元二次方程-直接开平方法(共1小题)
11.(2019•安徽)解方程:(x﹣1)2=4.
【解答】解:两边直接开平方得:x﹣1=±2,
∴x﹣1=2或x﹣1=﹣2,
解得:x1=3,x2=﹣1.
七.解一元一次不等式(共2小题)
12.(2021•安徽)解不等式:﹣1>0.
【解答】解:﹣1>0,
去分母,得
x﹣1﹣3>0,
移项及合并同类项,得
x>4.
13.(2020•安徽)解不等式:>1.
【解答】解:去分母,得:2x﹣1>2,
移项,得:2x>2+1,
合并,得:2x>3,
系数化为1,得:x>.
八.反比例函数与一次函数的交点问题(共1小题)
14.(2021•安徽)已知正比例函数y=kx(k≠0)与反比例函数y=的图象都经过点A(m,2).
(1)求k,m的值;
(2)在图中画出正比例函数y=kx的图象,并根据图象,写出正比例函数值大于反比例函数值时x的取值范围.
【解答】解:(1)将点A坐标代入反比例函数得:2m=6.
∴m=3.
∴A(3,2)
将点A坐标代入正比例函数得:2=3k.
∴k=.
(2)如图:
∴正比例函数值大于反比例函数值时x的取值范围:x>3或﹣3<x<0.
九.二次函数的性质(共2小题)
15.(2021•安徽)已知抛物线y=ax2﹣2x+1(a≠0)的对称轴为直线x=1.
(1)求a的值;
(2)若点M(x1,y1),N(x2,y2)都在此抛物线上,且﹣1<x1<0,1<x2<2.比较y1与y2的大小,并说明理由;
(3)设直线y=m(m>0)与抛物线y=ax2﹣2x+1交于点A、B,与抛物线y=3(x﹣1)2交于点C,D,求线段AB与线段CD的长度之比.
【解答】解:(1)根据题意可知,抛物线y=ax2﹣2x+1(a≠0)的对称轴为直线:x=﹣==1,
∴a=1.
(2)由(1)可知,抛物线的解析式为:y=x2﹣2x+1=(x﹣1)2,
∵a=1>0,
∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,
∵﹣1<x1<0,1<x2<2,
∴1<1﹣x1<2,0<x2﹣1<1,
结合函数图象可知,当抛物线开口向上时,距离对称轴越远,值越大,
∴y1>y2.
(3)联立y=m(m>0)与y=x2﹣2x+1=(x﹣1)2,可得A(1+,m),B(1﹣,m),
∴AB=2,
联立y=m(m>0)与y=3(x﹣1)2,可得C(1+,m),D(1﹣,m),
∴CD=2×=,
∴=.
16.(2019•安徽)一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点.
(1)求k,a,c的值;
(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.
【解答】解:(1)由题意得,k+4=2,解得k=﹣2,
∴一次函数为y=﹣2x+4,
又∵二次函数图象的顶点为(0,c),且该顶点是另一个交点,代入y=﹣2x+4得:c=4,
把(1,2)代入二次函数表达式得a+c=2,解得a=﹣2.
(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0
∴,设B,C两点的坐标分别为(x1,m)(x2,m),则BC=|x1﹣x2|=2,
∴W=OA2+BC2=
∴当m=1时,W取得最小值7.
一十.二次函数图象与几何变换(共1小题)
17.(2020•安徽)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.
(1)判断点B是否在直线y=x+m上,并说明理由;
(2)求a,b的值;
(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.
【解答】解:(1)点B是在直线y=x+m上,理由如下:
∵直线y=x+m经过点A(1,2),
∴2=1+m,解得m=1,
∴直线为y=x+1,
把x=2代入y=x+1得y=3,
∴点B(2,3)在直线y=x+m上;
(2)∵直线y=x+1经过点B(2,3),直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),点(0,1),A(1,2),B(2,3)在直线上,点(0,1),A(1,2)在抛物线上,直线与抛物线不可能有三个交点,
∵B(2,3),C(2,1)两点的横坐标相同,
∴抛物线只能经过A、C两点,
把A(1,2),C(2,1)代入y=ax2+bx+1得,
解得a=﹣1,b=2;
(3)由(2)知,抛物线的解析式为y=﹣x2+2x+1,
设平移后的抛物线的解析式为y=﹣x2+px+q,其顶点坐标为(,+q),
∵顶点仍在直线y=x+1上,
∴+q=+1,
∴q=﹣++1,
∵抛物线y=﹣x2+px+q与y轴的交点的纵坐标为q,
∴q=﹣++1=﹣(p﹣1)2+,
∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.
(3)另解
∵平移抛物线y=﹣x2+2x+1,其顶点仍在直线为y=x+1上,
设平移后的抛物线的解析式为y=﹣(x﹣h)2+h+1,
∴y=﹣x2+2hx﹣h2+h+1,
设平移后所得抛物线与y轴交点的纵坐标为c,则c=﹣h2+h+1=﹣(h﹣)2+
∴当h=时,平移后所得抛物线与y轴交点纵坐标的最大值为.
一十一.二次函数的应用(共1小题)
18.(2018•安徽)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:
①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;
②花卉的平均每盆利润始终不变.
小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为w1,w2(单位:元).
(1)用含x的代数式分别表示w1,w2;
(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润w最大,最大总利润是多少?
【解答】解:(1)设培植的盆景比第一期增加x盆,
则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,
所以w1=(50+x)(160﹣2x)=﹣2x2+60x+8000,
w2=19(50﹣x)=﹣19x+950;
(2)根据题意,得:
w=w1+w2
=﹣2x2+60x+8000﹣19x+950
=﹣2x2+41x+8950
=﹣2(x﹣)2+,
∵﹣2<0,且x为整数,
∴当x=10时,w最大值为9160,
当x=11时,w最大值为9159,
9159<9160,
∴当x=10时,w取得最大值,最大值为9160,
答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润w最大,最大总利润是9160元.
一十二.二次函数综合题(共1小题)
19.(2022•安徽)如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.
(1)求此抛物线对应的函数表达式;
(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:
(ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值;
(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).
【解答】解:(1)由题意可得:A(﹣6,2),D(6,2),
又∵E(0,8)是抛物线的顶点,
设抛物线对应的函数表达式为y=ax2+8,将A(﹣6,2)代入,
(﹣6)2a+8=2,
解得:a=﹣,
∴抛物线对应的函数表达式为y=﹣x2+8;
(2)(ⅰ)∵点P1的横坐标为m(0<m≤6),且四边形P1P2P3P4为矩形,点P2,P3在抛物线AED上,
∴P2的坐标为(m,﹣m2+8),
∴P1P2=P3P4=MN=﹣m2+8,P2P3=2m,
∴l=3(﹣m2+8)+2m=﹣m2+2m+24=﹣(m﹣2)2+26,
∵﹣<0,
∴当m=2时,l有最大值为26,
即栅栏总长l与m之间的函数表达式为l=﹣m2+2m+24,l的最大值为26;
(ⅱ)方案一:设P2P1=n,则P2P3=18﹣3n,
∴矩形P1P2P3P4面积为(18﹣3n)n=﹣3n2+18n=﹣3(n﹣3)2+27,
∵﹣3<0,
∴当n=3时,矩形面积有最大值为27,
此时P2P1=3,P2P3=9,
令﹣x2+8=3,
解得:x=±,
∴此时P1的横坐标的取值范围为﹣+9≤P1横坐标≤,
方案二:设P2P1=n,则P2P3==9﹣n,
∴矩形P1P2P3P4面积为(9﹣n)n=﹣n2+9n=﹣(n﹣)2+,
∵﹣1<0,
∴当n=时,矩形面积有最大值为,
此时P2P1=,P2P3=,
令﹣x2+8=,
解得:x=±,
∴此时P1的横坐标的取值范围为﹣+≤P1横坐标≤.
一十三.三角形综合题(共1小题)
20.(2018•安徽)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.
(1)求证:CM=EM;
(2)若∠BAC=50°,求∠EMF的大小;
(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.
【解答】(1)证明:如图1中,
∵DE⊥AB,
∴∠DEB=∠DCB=90°,
∵DM=MB,
∴CM=DB,EM=DB,
∴CM=EM.
(2)解:∵∠AED=90°,∠A=50°,
∴∠ADE=40°,∠CDE=140°,
∵CM=DM=ME,
∴∠MCD=∠MDC,∠MDE=∠MED,
∴∠CME=360°﹣2×140°=80°,
∴∠EMF=180°﹣∠CME=100°.
(3)证明:如图2中,设FM=a.
∵△DAE≌△CEM,CM=EM,
∴AE=ED=EM=CM=DM,∠AED=∠CME=90°
∴△ADE是等腰直角三角形,△DEM是等边三角形,
∴∠DEM=60°,∠MEF=30°,
∴AE=CM=EM=a,EF=2a,
∵CN=NM,
∴MN=a,
∴=,=,
∴=,
∴EM∥AN.
(也可以连接AM利用等腰三角形的三线合一的性质证明)
一十四.平行四边形的性质(共1小题)
21.(2019•安徽)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.
(1)求证:△BCE≌△ADF;
(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠ABC+∠BAD=180°,
∵AF∥BE,
∴∠EBA+∠BAF=180°,
∴∠CBE=∠DAF,
同理得∠BCE=∠ADF,
在△BCE和△ADF中,
∵,
∴△BCE≌△ADF(ASA);
(2)解:∵点E在▱ABCD内部,
∴S△BEC+S△AED=S▱ABCD,
由(1)知:△BCE≌△ADF,
∴S△BCE=S△ADF,
∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED=S▱ABCD,
∵▱ABCD的面积为S,四边形AEDF的面积为T,
∴==2.
一十五.四边形综合题(共4小题)
22.(2022•安徽)已知四边形ABCD中,BC=CD,连接BD,过点C作BD的垂线交AB于点E,连接DE.
(1)如图1,若DE∥BC,求证:四边形BCDE是菱形;
(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.
(ⅰ)求∠CED的大小;
(ⅱ)若AF=AE,求证:BE=CF.
【解答】(1)证明:设CE与BD交于点O,
∵CB=CD,CE⊥BD,
∴DO=BO,
∵DE∥BC,
∴∠DEO=∠BCO,
∵∠DOE=∠BOC,
∴△DOE≌△BOC(AAS),
∴DE=BC,
∴四边形BCDE是平行四边形,
∵CD=CB,
∴平行四边形BCDE是菱形;
(2)(i)解:∵DE垂直平分AC,
∴AE=EC且DE⊥AC,
∴∠AED=∠CED,
又∵CD=CB且CE⊥BD,
∴CE垂直平分DB,
∴DE=BE,
∴∠DEC=∠BEC,
∴∠AED=∠CED=∠BEC,
又∵∠AED+∠CED+∠BEC=180°,
∴∠CED=;
(ii)证明:由(i)得AE=EC,
又∵∠AEC=∠AED+∠DEC=120°,
∴∠ACE=30°,
同理可得,在等腰△DEB中,∠EBD=30°,
∴∠ACE=∠ABF=30°,
在△ACE与△ABF中,
,
∴△ABF≌△ACE(AAS),
∴AC=AB,
又∵AE=AF,
∴AB﹣AE=AC﹣AF,
即BE=CF.
23.(2021•安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.
[观察思考]
当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推.
[规律总结]
(1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加 2 块;
(2)若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为 2n+4 (用含n的代数式表示).
[问题解决]
(3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?
【解答】解:(1)观察图1可知:中间的每个正方形都对应了两个等腰直角三角形,所以每增加一块正方形地砖,等腰直角三角形地砖就增加2块;
故答案为:2;
(2)观察图形2可知:中间一个正方形的左上、左边、左下共有3个等腰直角三角形,它右上和右下各对应了一个等腰直角三角形,右边还有1个等腰直角三角形,即6=3+2×1+1=4+2×1;图3和图1中间正方形右上和右下都对应了两个等腰直角三角形,均有图2一样的规律,图3:8=3+2×2+1=4+2×2;归纳得:4+2n(即2n+4);
∴若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为 2n+4块;
故答案为:2n+4;
(3)由规律知:等腰直角三角形地砖块数2n+4是偶数,
∴用2021﹣1=2020块,
再由题意得:2n+4=2020,
解得:n=1008,
∴等腰直角三角形地砖剩余最少为1块,则需要正方形地砖1008块.
24.(2021•安徽)如图1,在四边形ABCD中,∠ABC=∠BCD,点E在边BC上,且AE∥CD,DE∥AB,作CF∥AD交线段AE于点F,连接BF.
(1)求证:△ABF≌△EAD;
(2)如图2.若AB=9,CD=5,∠ECF=∠AED,求BE的长;
(3)如图3,若BF的延长线经过AD的中点M,求的值.
【解答】解:(1)如图1,∵AE∥CD,
∴∠AEB=∠BCD,
∵∠ABC=∠BCD,
∴∠ABC=∠AEB,
∴AB=AE,
∵DE∥AB,
∴∠DEC=∠ABC,∠AED=∠BAF,
∵∠ABC=∠BCD,
∴∠DEC=∠BCD,
∴DE=DC,
∵CF∥AD,AE∥CD,
∴四边形ADCF是平行四边形,
∴AF=CD,
∴AF=DE,
在△ABF和△EAD中,
,
∴△ABF≌△EAD(SAS);
(2)方法①:∵CF∥AD,
∴∠EAD=∠CFE,
∵∠ECF=∠AED,
∴△EAD∽△CFE,
∴==,
由(1)知:四边形ADCF是平行四边形,
∴AD=CF,AF=CD,
∵AB=9,CD=5,
∴AE=9,DE=5,
∴EF=AE﹣AF=9﹣5=4,
∴==,
∴CF2=4×9=36,即CF=6,
∴CE=,
∵∠ABC=∠BCD=∠AEB=∠DEC,
∴△ABE∽△DEC,
∴=,即=,
∴BE=6;
方法②:由(1)知△ABF≌△EAD,
∴∠ABF=∠EAD,
∵∠EAD=∠CFE,
∴∠ABF=∠CFE,
∵∠ABC=∠AEB,∠ABC=∠ABF+∠EBF,∠AEB=∠CFE+∠ECF,
∴∠EBF=∠ECF,
∵∠BAE=∠AED=∠ECF,
∴∠EBF=∠BAE,
∵∠BEF=∠AEB,
∴△BEF∽△AEB,
∴=,即=,
∴BE=6;
(3)如图3,延长BM、ED交于点G,
∵△ABE,△DCE均为等腰三角形,且∠ABC=∠DCE,
∴△ABE∽△DCE,
∴==,
设DC=DE=a,CE=b,===x,
则AB=AE=ax,AF=CD=a,BE=bx,
∴EF=AE﹣AF=ax﹣a=a(x﹣1),
∵AB∥DG,
∴∠ABG=∠G
∵AD的中点M,
∴AM=DM,
∵∠AMB=∠DMG,
∴△AMB≌△DMG(AAS),
∴DG=AB=ax,
∴EG=DG+DE=ax+a=a(x+1),
∵AB∥DG(即AB∥EG),
∴△ABF∽△EGF,
∴=,即=,
∴x2﹣2x﹣1=0,
解得:x=1+或x=1﹣(舍去),
∴=x=1+.
25.(2020•安徽)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.
(1)求证:BD⊥EC;
(2)若AB=1,求AE的长;
(3)如图2,连接AG,求证:EG﹣DG=AG.
【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,
∴∠EAF=∠DAB=90°,
又∵AE=AD,AF=AB,
∴△AEF≌△ADB(SAS),
∴∠AEF=∠ADB,
∴∠GEB+∠GBE=∠ADB+∠ABD=90°,
即∠EGB=90°,
故BD⊥EC,
(2)解:∵四边形ABCD是矩形,
∴AE∥CD,
∴∠AEF=∠DCF,∠EAF=∠CDF,
∴△AEF∽△DCF,
∴,
即AE•DF=AF•DC,
设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,
解得或(舍去),
∴AE=.
(3)证明:如图,在线段EG上取点P,使得EP=DG,
在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,
∴△AEP≌△ADG(SAS),
∴AP=AG,∠EAP=∠DAG,
∴∠PAG=∠PAD+∠DAG=∠PAD+∠EAP=∠DAE=90°,
∴△PAG为等腰直角三角形,
∴EG﹣DG=EG﹣EP=PG=AG.
一十六.圆周角定理(共1小题)
26.(2021•安徽)如图,圆O中两条互相垂直的弦AB,CD交于点E.
(1)M是CD的中点,OM=3,CD=12,求圆O的半径长;
(2)点F在CD上,且CE=EF,求证:AF⊥BD.
【解答】解:(1)连接OD,如图:
∵M是CD的中点,CD=12,
∴DM=CD=6,OM⊥CD,∠OMD=90°,
Rt△OMD中,OD=,且OM=3,
∴OD==3,即圆O的半径长为3;
(2)连接AC,延长AF交BD于G,如图:
∵AB⊥CD,CE=EF,
∴AB是CF的垂直平分线,
∴AF=AC,即△ACF是等腰三角形,
∵CE=EF,
∴∠FAE=∠CAE,
∵=,
∴∠CAE=∠CDB,
∴∠FAE=∠CDB,
Rt△BDE中,∠CDB+∠B=90°,
∴∠FAE+∠B=90°,
∴∠AGB=90°,
∴AG⊥BD,即AF⊥BD.
一十七.切线的性质(共2小题)
27.(2022•安徽)已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.
(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;
(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE.求证:CE⊥AB.
【解答】解:(1)∵OA=1=OC,CO⊥AB,∠D=30°,
∴OD=•OC=,
∴AD=OD﹣OA=﹣1;
(2)∵DC与⊙O相切,
∴OC⊥CD,
即∠ACD+∠OCA=90°,
∵OA=OC,
∴∠OCA=∠OAC,
∵∠ACD=∠ACE,
∴∠OAC+∠ACE=90°,
∴∠AEC=90°,
即CE⊥AB.
28.(2020•安徽)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.
(1)求证:△CBA≌△DAB;
(2)若BE=BF,求证:AC平分∠DAB.
【解答】(1)证明:∵AB是半圆O的直径,
∴∠ACB=∠ADB=90°,
在Rt△CBA与Rt△DAB中,,
∴Rt△CBA≌Rt△DAB(HL);
(2)解:∵BE=BF,由(1)知BC⊥EF,
∴∠E=∠BFE,
∵BE是半圆O所在圆的切线,
∴∠ABE=90°,
∴∠E+∠BAE=90°,
由(1)知∠D=90°,
∴∠DAF+∠AFD=90°,
∵∠AFD=∠BFE,
∴∠AFD=∠E,
∵∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,
∴∠DAF=∠BAF,
∴AC平分∠DAB.
一十八.作图—复杂作图(共1小题)
29.(2018•安徽)如图,⊙O为锐角△ABC的外接圆,半径为5.
(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);
(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.
【解答】解:(1)如图,AE为所作;
(2)连接OE交BC于F,连接OC、EC,如图,
∵AE平分∠BAC,
∴∠BAE=∠CAE,
∴=,
∴OE⊥BC,
∴EF=3,
∴OF=5﹣3=2,
在Rt△OCF中,CF==,
在Rt△CEF中,CE==.
一十九.作图-平移变换(共1小题)
30.(2019•安徽)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.
(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.
(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)
【解答】解:(1)如图所示:线段CD即为所求;
(2)如图:菱形CDEF即为所求,答案不唯一.
二十.作图-旋转变换(共3小题)
31.(2022•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).
(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;
(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.
【解答】解:(1)如图,△A1B1C1即为所求;
(2)如图,△A2B2C2即为所求.
32.(2021•安徽)如图,在每个小正方形的边长为1个单位的网格中,△ABC的顶点均在格点(网格线的交点)上.
(1)将△ABC向右平移5个单位得到△A1B1C1,画出△A1B1C1;
(2)将(1)中的△A1B1C1绕点C1逆时针旋转90°得到△A2B2C1,画出△A2B2C1.
【解答】解:(1)如图,△A1B1C1即为所求作.
(2)如图,△A2B2C1即为所求作.
33.(2020•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.
(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);
(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.
【解答】解:(1)如图线段A1B1即为所求.
(2)如图,线段B1A2即为所求.
二十一.相似三角形的判定与性质(共1小题)
34.(2019•安徽)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.
(1)求证:△PAB∽△PBC;
(2)求证:PA=2PC;
(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.
【解答】解:(1)∵∠ACB=90°,AC=BC,
∴∠ABC=45°=∠PBA+∠PBC
又∠APB=135°,
∴∠PAB+∠PBA=45°
∴∠PBC=∠PAB
又∵∠APB=∠BPC=135°,
∴△PAB∽△PBC
(2)∵△PAB∽△PBC
∴
在Rt△ABC中,AC=BC,
∴
∴
∴PA=2PC
(3)如图,过点P作PD⊥BC于D,PE⊥AC于E,PF⊥AB于点F,
∴PF=h1,PD=h2,PE=h3,
∵∠CPB+∠APB=135°+135°=270°
∴∠APC=90°,
∴∠EAP+∠ACP=90°,
又∵∠ACB=∠ACP+∠PCD=90°
∴∠EAP=∠PCD,
∴Rt△AEP∽Rt△CDP,
∴,即,
∴h3=2h2
∵△PAB∽△PBC,
∴,
∴
∴.
即:h12=h2•h3.
二十二.作图-位似变换(共1小题)
35.(2018•安徽)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.
(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;
(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;
(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是 20 个平方单位.
【解答】解:(1)如图所示,线段A1B1即为所求;
(2)如图所示,线段A2B1即为所求;
(3)由图可得,四边形AA1B1A2为正方形,
∴四边形AA1B1A2的面积是()2=()2=20.
故答案为:20.
二十三.解直角三角形的应用(共2小题)
36.(2021•安徽)学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD为矩形,点B、C分别在EF、DF上,∠ABC=90°,∠BAD=53°,AB=10cm,BC=6cm.求零件的截面面积.参考数据:sin53°≈0.80,cos53°≈0.60.
【解答】解:如图,
∵四边形AEFD为矩形,∠BAD=53°,
∴AD∥EF,∠E=∠F=90°,
∴∠BAD=∠EBA=53°,
在Rt△ABE中,∠E=90°,AB=10cm,∠EBA=53°,
∴sin∠EBA=≈0.80,cos∠EBA=≈0.60,
∴AE=8cm,BE=6cm,
∵∠ABC=90°,
∴∠FBC=90°﹣∠EBA=37°,
∴∠BCF=90°﹣∠FBC=53°,
在Rt△BCF中,∠F=90°,BC=6cm,
∴sin∠BCF=≈0.80,cos∠BCF=≈0.60,
∴BF=4.8cm,FC=3.6cm,
∴EF=6+4.8=10.8cm,
∴S四边形EFDA=AE•EF=8×10.8=86.4(cm2),
S△ABE==×8×6=24(cm2),
S△BCF=•BF•CF=×4.8×3.6=8.64(cm2),
∴截面的面积=S四边形EFDA﹣S△ABE﹣S△BCF=86.4﹣24﹣8.64=53.76(cm2).
37.(2019•安徽)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨道是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.
(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)
【解答】解:连接CO并延长,与AB交于点D,
∵CD⊥AB,∴AD=BD=AB=3(米),
在Rt△AOD中,∠OAD=41.3°,
∴cos41.3°=,即OA===4(米),
tan41.3°=,即OD=AD•tan41.3°=3×0.88=2.64(米),
则CD=CO+OD=4+2.64=6.64(米).
二十四.解直角三角形的应用-仰角俯角问题(共2小题)
38.(2020•安徽)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).
(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)
【解答】解:由题意,在Rt△ABD中,tan∠ABD=,
∴tan42.0°=≈0.9,
∴AD≈0.9BD,
在Rt△BCD中,tan∠CBD=,
∴tan36.9°=≈0.75,
∴CD≈0.75BD,
∵AC=AD﹣CD,
∴15=0.15BD,
∴BD=100(米),
∴CD=0.75BD=75(米),
答:山高CD为75米.
39.(2018•安徽)为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)
【解答】解:由题意,可得∠FED=45°.
在直角△DEF中,∵∠FDE=90°,∠EFD=45°,
∴DE=DF=1.8米,EF=DE=米.
∵∠AEB=∠FED=45°,
∴∠AEF=180°﹣∠AEB﹣∠FED=90°.
在直角△AEF中,∵∠AEF=90°,∠AFE=39.3°+45°=84.3°,
∴AE=EF•tan∠AFE≈×10.02=18.036(米).
在直角△ABE中,∵∠ABE=90°,∠AEB=45°,
∴AB=AE•sin∠AEB≈18.036×≈18(米).
故旗杆AB的高度约为18米.
二十五.解直角三角形的应用-方向角问题(共1小题)
40.(2022•安徽)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.
参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.
【解答】解:∵CE∥AD,
∴∠A=∠ECA=37°,
∴∠CBD=∠A+∠ADB=37°+53°=90°,
∴∠ABD=90°,
在Rt△BCD中,∠BDC=90°﹣53°=37°,CD=90米,cos∠BDC=,
∴BD=CD•cos∠37°≈90×0.80=72(米),
在Rt△ABD中,∠A=37°,BD=72米,tanA=,
∴AB=≈=96(米).
答:A,B两点间的距离约96米.
二十六.频数(率)分布直方图(共1小题)
41.(2021•安徽)为了解全市居民用户用电情况,某部门从居民用户中随机抽取100户进行月用电量(单位:kW•h)调查,按月用电量50~100,100~150,150~200,200~250,250~300,300~350进行分组,绘制频数分布直方图如图.
(1)求频数分布直方图中x的值;
(2)判断这100户居民用户月用电量数据的中位数在哪一组(直接写出结果);
(3)设各组居民用户月平均用电量如表:
组别
50~100
100~150
150~200
200~250
250~300
300~350
月平均用电量(单位:kW•h)
75
125
175
225
275
325
根据上述信息,估计该市居民用户月用电量的平均数.
【解答】解:(1)x=100﹣12﹣18﹣30﹣12﹣6=22(户),
答:x的值为22;
(2)将这100户的用电量从小到大排列,处在中间位置的两个数都落在150~200这一组,
所以这100户居民用户月用电量数据的中位数在150~200这一组;
(3)估计该市居民用户月用电量的平均数为=186(kW•h),
答:估计该市居民用户月用电量的平均数为186kW•h.
二十七.扇形统计图(共1小题)
42.(2022•安徽)第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生,为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x表示):
A:70≤x<75,B:75≤x<80,C:80≤x<85,
D:85≤x<90,E:90≤x<95,F:95≤x≤100,
并绘制七年级测试成绩频数分布直方图和八年级测试成绩扇形统计图,部分信息如下:
已知八年级测试成绩D组的全部数据如下:
86,85,87,86,85,89,88.
请根据以上信息,完成下列问题:
(1)n= 20 ,a= 4 ;
(2)八年级测试成绩的中位数是 86.5 ;
(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两个年级对冬奥会关注程度高的学生一共有多少人,并说明理由.
【解答】解:(1)由题意得:n=7÷35%=20(人),
故2a=20﹣1﹣2﹣3﹣6=8,
解得a=4,
故答案为:20;4;
(2)把八年级测试成绩从小到大排列,排在中间的两个数分别为86,87,故中位数为=86.5,
故答案为:86.5;
(3)500×+500×(1﹣5%﹣5%﹣20%﹣35%)
=100+175
=275(人),
故估计该校七、八两个年级对冬奥会关注程度高的学生一共有275人.
二十八.列表法与树状图法(共3小题)
43.(2020•安徽)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:
(1)在抽取的240人中最喜欢A套餐的人数为 60 ,扇形统计图中“C”对应扇形的圆心角的大小为 108 °;
(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;
(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.
【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),
则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),
∴扇形统计图中“C”对应扇形的圆心角的大小为360°×=108°,
故答案为:60、108;
(2)估计全体960名职工中最喜欢B套餐的人数为960×=336(人);
(3)画树状图为:
共有12种等可能的结果数,其中甲被选到的结果数为6,
∴甲被选到的概率为=.
44.(2019•安徽)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的各数据按从小到大的顺序整理成如下表格:
编号
①
②
③
④
⑤
⑥
⑦
⑧
⑨
⑩
⑪
⑫
⑬
⑭
⑮
尺寸(cm)
8.72
8.88
8.92
8.93
8.94
8.96
8.97
8.98
a
9.03
9.04
9.06
9.07
9.08
b
按照生产标准,产品等次规定如下:
尺寸(单位:cm)
产品等次
8.97≤x≤9.03
特等品
8.95≤x≤9.05
优等品
8.90≤x≤9.10
合格品
x<8.90或x>9.10
非合格品
注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.
(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.
(2)已知此次抽检出的优等品尺寸的中位数为9cm.
(i)求a的值;
(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.
【解答】解:(1)不合格.
因为15×80%=12,不合格的有15﹣12=3个,给出的数据只有①②两个不合格;
(2)(i)优等品有⑥~⑪,中位数是⑧8.98,⑨a的平均数,
∴,
解得a=9.02
(ii)大于9cm的优品有⑨⑩⑪,小于9cm的优品有⑥⑦⑧,其中特等品为⑦⑧⑨⑩
画树状图为:
共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种.
∴抽到两种产品都是特等品的概率P=.
45.(2018•安徽)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数分布直方图.部分信息如下:
(1)本次比赛参赛选手共有 50 人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为 30% ;
(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;
(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.
【解答】解:(1)5÷10%=50,
所以本次比赛参赛选手共有50人,
“89.5~99.5”这一组人数占总参赛人数的百分比为×100%=24%,
所以“69.5~79.5”这一组人数占总参赛人数的百分比为1﹣10%﹣36%﹣24%=30%;
故答案为50,30%;
(2)他不能获奖.
理由如下:
他的成绩位于“69.5~79.5”之间,
而“59.5~69.5”和“69.5~79.5”两分数段的百分比为10%+30%=40%,
因为成绩由高到低前60%的参赛选手获奖,他位于后40%,
所以他不能获奖;
(3)画树状图为:
共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,
所以恰好选中1男1女的概率==.
安徽省三年(2020-2022)中考数学真题按题型分类汇编:03解答题基础题知识点分类: 这是一份安徽省三年(2020-2022)中考数学真题按题型分类汇编:03解答题基础题知识点分类,共17页。试卷主要包含了观察以下等式,某超市有线上和线下两种销售方式,解不等式,的对称轴为直线x=1等内容,欢迎下载使用。
江苏省泰州市五年(2018-2022)中考数学真题分层分类汇编:03解答题(基础题)知识点分类: 这是一份江苏省泰州市五年(2018-2022)中考数学真题分层分类汇编:03解答题(基础题)知识点分类,共18页。试卷主要包含了×;,计算,分解因式,﹣1﹣sin60°;,的函数关系等内容,欢迎下载使用。
03解答题知识点分类-江苏省苏州市五年(2018-2022)中考数学真题分类汇编: 这是一份03解答题知识点分类-江苏省苏州市五年(2018-2022)中考数学真题分类汇编,共74页。试卷主要包含了计算,的值,•,其中x=﹣1,,其中,x=﹣3,解方程组,解方程等内容,欢迎下载使用。