2022年湖北省武汉市武珞路中学中考数学最后冲刺浓缩精华卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.一个多边形的每个内角均为120°,则这个多边形是( )
A.四边形 B.五边形 C.六边形 D.七边形
2.在解方程-1=时,两边同时乘6,去分母后,正确的是( )
A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)
C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)
3.如图,在矩形 ABCD 中,AB=2a,AD=a,矩形边上一动点 P 沿 A→B→C→D 的路径移动.设点 P 经过的路径长为 x,PD2=y,则下列能大致反映 y 与 x 的函数关系的图象是( )
A. B.
C. D.
4.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且−2≤x≤1时,y的最大值为9,则a的值为
A.1或−2 B.−或
C. D.1
5.圆锥的底面直径是80cm,母线长90cm,则它的侧面积是
A. B. C. D.
6.计算(x-2)(x+5)的结果是
A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-10
7.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一个,周二个,周三个,周四个,周五个则小丽这周跳绳个数的中位数和众数分别是
A.180个,160个 B.170个,160个
C.170个,180个 D.160个,200个
8.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是
A. B. C. D.
9.如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=2,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=( )
A.1 B.2 C.3 D.4
10.方程的根是( )
A.x=2 B.x=0 C.x1=0,x2=-2 D. x1=0,x2=2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k的值为_____.
12.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.
13.已知抛物线y=,那么抛物线在y轴右侧部分是_________(填“上升的”或“下降的”).
14.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .
15.等腰梯形是__________对称图形.
16.如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.
(1)OM的长等于_______;
(2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.
三、解答题(共8题,共72分)
17.(8分)用你发现的规律解答下列问题.
┅┅计算 .探究 .(用含有的式子表示)若的值为,求的值.
18.(8分)已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:△ACE∽△BDE;BE•DC=AB•DE.
19.(8分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.
(1)直接写出销售量y个与降价x元之间的函数关系式;
(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?
(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?
20.(8分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如表:
x/cm
0
1
2
3
4
5
y/cm
6.0
4.8
4.5
6.0
7.4
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.
21.(8分)为营造浓厚的创建全国文明城市氛围,东营市某中学委托制衣厂制作“最美东营人”和“最美志愿者”两款文化衫.若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需145元.
(1)求“最美东营人”和“最美志愿者”两款文化衫每件各多少元?
(2)若该中学要购进“最美东营人”和“最美志愿者”两款文化衫共90件,总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,那么该中学有哪几种购买方案?
22.(10分)声音在空气中传播的速度y(m/s)是气温x(℃)的一次函数,下表列出了一组不同气温的音速:
气温x(℃)
0
5
10
15
20
音速y(m/s)
331
334
337
340
343
(1)求y与x之间的函数关系式:
(2)气温x=23℃时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远?
23.(12分)Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE,OD.
(1)如图①,求∠ODE的大小;
(2)如图②,连接OC交DE于点F,若OF=CF,求∠A的大小.
24.如图,AB是半圆O的直径,D为弦BC的中点,延长OD交弧BC于点E,点F为OD的延长线上一点且满足∠OBC=∠OFC,求证:CF为⊙O的切线;若四边形ACFD是平行四边形,求sin∠BAD的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
由题意得,180°(n-2)=120°,
解得n=6.故选C.
2、D
【解析】
解: ,∴3(x﹣1)﹣6=2(3x+1),故选D.
点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型.
3、D
【解析】
解:(1)当0≤t≤2a时,∵,AP=x,∴;
(2)当2a<t≤3a时,CP=2a+a﹣x=3a﹣x,∵,∴=;
(3)当3a<t≤5a时,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;
综上,可得,∴能大致反映y与x的函数关系的图象是选项D中的图象.故选D.
4、D
【解析】
先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.
【详解】
∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),
∴对称轴是直线x=-=-1,
∵当x≥2时,y随x的增大而增大,
∴a>0,
∵-2≤x≤1时,y的最大值为9,
∴x=1时,y=a+2a+3a2+3=9,
∴3a2+3a-6=0,
∴a=1,或a=-2(不合题意舍去).
故选D.
【点睛】
本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点.
5、D
【解析】
圆锥的侧面积=×80π×90=3600π(cm2) .
故选D.
6、C
【解析】
根据多项式乘以多项式的法则进行计算即可.
【详解】
故选:C.
【点睛】
考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.
7、B
【解析】
根据中位数和众数的定义分别进行解答即可.
【详解】
解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;
160出现了2次,出现的次数最多,则众数是160;
故选B.
【点睛】
此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.
8、A
【解析】
分析:甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,所以,。故选A。
9、B
【解析】
先利用三角函数计算出∠OAB=60°,再根据旋转的性质得∠CAB=30°,根据切线的性质得OC⊥AC,从而得到∠OAC=30°,然后根据含30度的直角三角形三边的关系可得到OC的长.
【详解】
解:在Rt△ABO中,sin∠OAB===,
∴∠OAB=60°,
∵直线l1绕点A逆时针旋转30°后得到的直线l1刚好与⊙O相切于点C,
∴∠CAB=30°,OC⊥AC,
∴∠OAC=60°﹣30°=30°,
在Rt△OAC中,OC=OA=1.
故选B.
【点睛】
本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了旋转的性质.
10、C
【解析】
试题解析:x(x+1)=0,
⇒x=0或x+1=0,
解得x1=0,x1=-1.
故选C.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
根据题意和旋转的性质,可以得到点C的坐标,把点C坐标代入反比例函数y=中,即可求出k的值.
【详解】
∵OB在x轴上,∠ABO=90°,点A的坐标为(2,4),∴OB=2,AB=4
∵将△AOB绕点A逆时针旋转90°,∴AD=4,CD=2,且AD//x轴
∴点C的坐标为(6,2),
∵点O的对应点C恰好落在反比例函数y=的图象上,
∴k=2,
故答案为1.
【点睛】
本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答.
12、28
【解析】
设这种电子产品的标价为x元,
由题意得:0.9x−21=21×20%,
解得:x=28,
所以这种电子产品的标价为28元.
故答案为28.
13、上升的
【解析】
∵抛物线y=x2-1开口向上,对称轴为x=0 (y 轴),
∴在y 轴右侧部分抛物线呈上升趋势.
故答案为:上升的.
【点睛】
本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.
14、1或.
【解析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,
在Rt△ABC中,AB=1,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=1,
∴CB′=5-1=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②当点B′落在AD边上时,如答图2所示.
此时ABEB′为正方形,∴BE=AB=1.
综上所述,BE的长为或1.
故答案为:或1.
15、轴
【解析】
根据轴对称图形的概念,等腰梯形是轴对称图形,且有1条对称轴,即底边的垂直平分线.
【详解】
画图如下:
结合图形,根据轴对称的定义及等腰梯形的特征可知,
等腰梯形是轴对称图形.
故答案为:轴
【点睛】
本题考查了关于轴对称的定义,运用定义会进行判断一个图形是不是轴对称图形.
16、(1)4;(2)见解析;
【解析】
解:(1)由勾股定理可得OM的长度
(2)取格点 F , E, 连接 EF , 得到点 N ,取格点S, T, 连接ST, 得到点R, 连接NR交OM于P,则点P即为所求。
【详解】
(1)OM==4;
故答案为4.
(2)以点O为原点建立直角坐标系,则A(1,0),B(4,0),设P(a,a),(0≤a≤4),
∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,
∴PA2+PB2=4(a﹣)2+,
∵0≤a≤4,
∴当a=时,PA2+PB2 取得最小值,
综上,需作出点P满足线段OP的长=;
取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR交OM于P,
则点P即为所求.
【点睛】(1) 根据勾股定理即可得到结论;
(2) 取格点F, E, 连接EF, 得到点N, 取格点S, T,连接ST, 得到点R, 连接NR即可得到结果.
三、解答题(共8题,共72分)
17、解:(1);(2);(3)n=17.
【解析】
(1)、根据给出的式子将各式进行拆开,然后得出答案;(2)、根据给出的式子得出规律,然后根据规律进行计算;(3)、根据题意将式子进行展开,然后列出关于n的一元一次方程,从而得出n的值.
【详解】
(1)原式=1−+−+−+−+−=1−=.
故答案为;
(2)原式=1−+−+−+…+−=1−=
故答案为;
(3) +++…+
= (1−+−+−+…+−)
=(1−)
=
=
解得:n=17.
考点:规律题.
18、(1)答案见解析;(2)答案见解析.
【解析】
(1)根据邻补角的定义得到∠BDE=∠ACE,即可得到结论;
(2)根据相似三角形的性质得到 ,由于∠E=∠E,得到△ECD∽△EAB,由相似三角形的性质得到 ,等量代换得到,即可得到结论.
本题解析:
【详解】
证明:(1)∵∠ADB=∠ACB,∴∠BDE=∠ACE,又∵∠E=∠E,∴△ACE∽△BDE;
(2)∵△ACE∽△BDE
∴,∵∠E=∠E,∴△ECD∽△EAB,∴,∴BE•DC=AB•DE.
【点睛】
本题考查相似三角形的判定与性质,熟练掌握判定定理是关键.
19、(1)y=10x+160;(2)5280元;(3)10000元.
【解析】试题分析:(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;
(2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案;
(3)根据题意,由利润不低于5200元列出不等式,进一步得到销售量的取值范围,从而求出答案.
试题解析:(1)依题意有:y=10x+160;
(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,∵-10<0且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;
(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).
答:他至少要准备10000元进货成本.
点睛:此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.
20、(1)2.1;(2)见解析;(3)x=2时,函数有最小值y=4.2
【解析】
(1)通过作辅助线,应用三角函数可求得HM+HN的值即为x=2时,y的值;
(2)可在网格图中直接画出函数图象;
(3)由函数图象可知函数的最小值.
【详解】
(1)当点P运动到点H时,AH=3,作HN⊥AB于点N.
∵在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,∴∠HAN=42°,∴AN=HN=AH•sin42°=3,∴HM,HB,∴HM+HN==≈≈2.122+2.834≈2.1.
故答案为:2.1;
(2)
(3)根据函数图象可知,当x=2时,函数有最小值y=4.2.
故答案为:4.2.
【点睛】
本题考查了二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
21、(1)“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)有三种方案,具体见解析.
【解析】
(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,根据若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需11元建立方程组求出其解即可;
(2)设购买“最美东营人”文化衫m件,根据总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,列出不等式组,然后求m的正整数解.
【详解】
(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,
由题意,得
,
解得:
.
答:“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;
(2)设购买“最美东营人”文化衫m件,则购买“最美志愿者”文化衫(90-m)件,
由题意,得,
解得:41<m<1.
∵m是整数,
∴m=42,43,2.
则90-m=48,47,3.
答:方案一:购买“最美东营人”文化衫42件,“最美志愿者”文化衫48件;
方案二:购买“最美东营人”文化衫43件,“最美志愿者”文化衫47件;
方案三:购买“最美东营人”文化衫2件,“最美志愿者”文化衫3件.
【点睛】
本题考查了二元一次方程组的运用,一元一次不等式组的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.
22、 (1) y=x+331;(2)1724m.
【解析】
(1)先设函数一般解析式,然后根据表格中的数据选择其中两个带入解析式中即可求得函数关系式(2)将x=23带入函数解析式中求解即可.
【详解】
解:(1)设y=kx+b,∴
∴k=,
∴y=x+331.
(2)当x=23时,y= x23+331=344.8
∴5344.8=1724.
∴此人与烟花燃放地相距约1724m.
【点睛】
此题重点考察学生对一次函数的实际应用,熟练掌握一次函数解析式的求法是解题的关键.
23、(1)∠ODE=90°;(2)∠A=45°.
【解析】
分析:(Ⅰ)连接OE,BD,利用全等三角形的判定和性质解答即可;
(Ⅱ)利用中位线的判定和定理解答即可.
详解:(Ⅰ)连接OE,BD.
∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=90°.
∵E点是BC的中点,∴DE=BC=BE.
∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE.
∵∠ABC=90°,∴∠ODE=90°;
(Ⅱ)∵CF=OF,CE=EB,∴FE是△COB的中位线,∴FE∥OB,∴∠AOD=∠ODE,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.
∵OA=OD,∴∠A=∠ADO=.
点睛:本题考查了圆周角定理,关键是根据学生对全等三角形的判定方法及切线的判定等知识的掌握情况解答.
24、 (1)见解析;(2).
【解析】
(1)连接OC,根据等腰三角形的性质得到∠OCB=∠B,∠OCB=∠F,根据垂径定理得到OF⊥BC,根据余角的性质得到∠OCF=90°,于是得到结论;
(2)过D作DH⊥AB于H,根据三角形的中位线的想知道的OD=AC,根据平行四边形的性质得到DF=AC,设OD=x,得到AC=DF=2x,根据射影定理得到CD=x,求得BD=x,根据勾股定理得到AD=x,于是得到结论.
【详解】
解:(1)连接OC,
∵OC=OB,
∴∠OCB=∠B,
∵∠B=∠F,
∴∠OCB=∠F,
∵D为BC的中点,
∴OF⊥BC,
∴∠F+∠FCD=90°,
∴∠OCB+∠FCD=90°,
∴∠OCF=90°,
∴CF为⊙O的切线;
(2)过D作DH⊥AB于H,
∵AO=OB,CD=DB,
∴OD=AC,
∵四边形ACFD是平行四边形,
∴DF=AC,
设OD=x,
∴AC=DF=2x,
∵∠OCF=90°,CD⊥OF,
∴CD2=OD•DF=2x2,
∴CD=x,
∴BD=x,
∴AD=x,
∵OD=x,BD=x,
∴OB=x,
∴DH=x,
∴sin∠BAD==.
【点睛】
本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键.
湖北省武汉市武珞路中学2022年中考数学最后冲刺浓缩精华卷含解析: 这是一份湖北省武汉市武珞路中学2022年中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,计算 的结果是,下列图形中,主视图为①的是,已知,则的值为,﹣2×等内容,欢迎下载使用。
2022届湖北省枣阳市阳光中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届湖北省枣阳市阳光中学中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,- 的绝对值是等内容,欢迎下载使用。
2022届湖北省枣阳市清潭中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届湖北省枣阳市清潭中学中考数学最后冲刺浓缩精华卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列各数等内容,欢迎下载使用。