2021-2022学年山东省德州庆云县联考中考猜题数学试卷含解析
展开
这是一份2021-2022学年山东省德州庆云县联考中考猜题数学试卷含解析,共20页。试卷主要包含了按一定规律排列的一列数依次为,|﹣3|的值是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列计算正确的是( )
A.﹣= B. =±2
C.a6÷a2=a3 D.(﹣a2)3=﹣a6
2.下列计算正确的是
A.a2·a2=2a4 B.(-a2)3=-a6 C.3a2-6a2=3a2 D.(a-2)2=a2-4
3.某校九年级(1)班全体学生实验考试的成绩统计如下表:
成绩(分)
24
25
26
27
28
29
30
人数(人)
2
5
6
6
8
7
6
根据上表中的信息判断,下列结论中错误的是( )
A.该班一共有40名同学
B.该班考试成绩的众数是28分
C.该班考试成绩的中位数是28分
D.该班考试成绩的平均数是28分
4.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是( )
A.∠DAC=∠ABC B.AC是∠BCD的平分线 C.AC2=BC•CD D.
5.按一定规律排列的一列数依次为:﹣,1,﹣,、﹣、…,按此规律,这列数中的第100个数是( )
A.﹣ B. C. D.
6.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )
A.选科目E的有5人
B.选科目A的扇形圆心角是120°
C.选科目D的人数占体育社团人数的
D.据此估计全校1000名八年级同学,选择科目B的有140人
7.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )
A.9分 B.8分 C.7分 D.6分
8.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是( )
A.点M B.点N C.点P D.点Q
9.|﹣3|的值是( )
A.3 B. C.﹣3 D.﹣
10.某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( )
A.1000(1+x)2=1000+500
B.1000(1+x)2=500
C.500(1+x)2=1000
D.1000(1+2x)=1000+500
11.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是( )
A.方程有两个相等的实数根
B.方程有两个不相等的实数根
C.没有实数根
D.无法确定
12.如图所示的几何体的主视图正确的是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为__.
14.一个圆锥的侧面展开图是半径为8 cm、圆心角为120°的扇形,则此圆锥底面圆的半径为________.
15.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为____米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)
16.如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.
(1)OM的长等于_______;
(2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.
17.如图所示,直线y=x+1(记为l1)与直线y=mx+n(记为l2)相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为__________.
18.如图,等边△ABC的边长为1cm,D、E分别是AB、AC边上的点,将△ADE沿直线DE折叠,点A落在点处,且点在△ABC的外部,则阴影部分图形的周长为_____cm.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米,参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,≈1.73)
20.(6分)如图,已知点E,F分别是▱ABCD的对角线BD所在直线上的两点,BF=DE,连接AE,CF,求证:CF=AE,CF∥AE.
21.(6分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.
将三角形、正方形、五边形都整齐的由左到右填在所示表格里:
三角形数
1
3
6
10
15
21
a
…
正方形数
1
4
9
16
25
b
49
…
五边形数
1
5
12
22
C
51
70
…
(1)按照规律,表格中a=___,b=___,c=___.
(2)观察表中规律,第n个“正方形数”是________;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是___________.
22.(8分)某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.
(1)设该学校需要印刷艺术节的宣传资料x份,支付甲印刷厂的费用为y元,写出y关于x的函数关系式,并写出它的定义域;
(2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?
23.(8分)如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.求证:AB为⊙C的切线.求图中阴影部分的面积.
24.(10分)如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D作DE⊥AC交BA延长线于点E,垂足为点F.
(1)求tan∠ADF的值;
(2)证明:DE是⊙O的切线;
(3)若⊙O的半径R=5,求EF的长.
25.(10分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=30,∠CBD=60.
(1)求AB的长(精确到0.1米,参考数据:);
(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.
26.(12分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
(1)求证:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.
27.(12分)如今,旅游度假成为了中国人庆祝传统春节的一项的“新年俗”,山西省旅发委发布的《2018年“春节”假日旅游市场总结分析报告》中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:
(1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,2018年首次突破了“千万”大关,达到 万人次,比2017年春节假日增加 万人次.
(2)2018年2月15日﹣20日期间,山西省35个重点景区每日接待游客数量如下:
日期
2月15日
(除夕)
2月16日
(初一)
2月17日
(初二)
2月18日(初三)
2月19日
(初四)
2月20日
(初五)
日接待游客数量(万人次)
7.56
82.83
119.51
84.38
103.2
151.55
这组数据的中位数是 万人次.
(3)根据图2中的信息预估:2019年春节假日山西旅游总收入比2018年同期增长的百分率约为 ,理由是 .
(4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A,B,C,D四枚书签(除图案外完全相同).正面分别印有“剪纸艺术”、“国粹京剧”、“陶瓷艺术”、“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算.
【详解】
A. 不是同类二次根式,不能合并,故A选项错误;
B.=2≠±2,故B选项错误;
C. a6÷a2=a4≠a3,故C选项错误;
D. (−a2)3=−a6,故D选项正确.
故选D.
【点睛】
本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.
2、B
【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.
【详解】A. a2·a2=a4 ,故A选项错误;
B. (-a2)3=-a6 ,正确;
C. 3a2-6a2=-3a2 ,故C选项错误;
D. (a-2)2=a2-4a+4,故D选项错误,
故选B.
【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.
3、D
【解析】
直接利用众数、中位数、平均数的求法分别分析得出答案.
【详解】
解:A、该班一共有2+5+6+6+8+7+6=40名同学,故此选项正确,不合题意;
B、该班考试成绩的众数是28分,此选项正确,不合题意;
C、该班考试成绩的中位数是:第20和21个数据的平均数,为28分,此选项正确,不合题
意;
D、该班考试成绩的平均数是:(24×2+25×5+26×6+27×6+28×8+29×7+30×6)÷40=27.45(分),
故选项D错误,符合题意.
故选D.
【点睛】
此题主要考查了众数、中位数、平均数的求法,正确把握相关定义是解题关键.
4、C
【解析】
结合图形,逐项进行分析即可.
【详解】
在△ADC和△BAC中,∠ADC=∠BAC,
如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;
②,
故选C.
【点睛】
本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.
5、C
【解析】
根据按一定规律排列的一列数依次为:,1,,,,…,可知符号规律为奇数项为负,偶数项为正;分母为3、7、9、……,型;分子为型,可得第100个数为.
【详解】
按一定规律排列的一列数依次为:,1,,,,…,按此规律,奇数项为负,偶数项为正,分母为3、7、9、……,型;分子为型,
可得第n个数为,
∴当时,这个数为,
故选:C.
【点睛】
本题属于规律题,准确找出题目的规律并将特殊规律转化为一般规律是解决本题的关键.
6、B
【解析】
A选项先求出调查的学生人数,再求选科目E的人数来判定,
B选项先求出A科目人数,再利用×360°判定即可,
C选项中由D的人数及总人数即可判定,
D选项利用总人数乘以样本中B人数所占比例即可判定.
【详解】
解:调查的学生人数为:12÷24%=50(人),选科目E的人数为:50×10%=5(人),故A选项正确,
选科目A的人数为50﹣(7+12+10+5)=16人,选科目A的扇形圆心角是×360°=115.2°,故B选项错误,
选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的,故C选项正确,
估计全校1000名八年级同学,选择科目B的有1000×=140人,故D选项正确;
故选B.
【点睛】
本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息.
7、C
【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.
详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为 :7分,
故答案为:C.
点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
8、D
【解析】
∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,
∴原点在点M与N之间,
∴这四个数中绝对值最大的数对应的点是点Q.
故选D.
9、A
【解析】
分析:根据绝对值的定义回答即可.
详解:负数的绝对值等于它的相反数,
故选A.
点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.
10、A
【解析】
设该公司第5、6个月投放科研经费的月平均增长率为x,5月份投放科研经费为1000(1+x),6月份投放科研经费为1000(1+x)(1+x),即可得答案.
【详解】
设该公司第5、6个月投放科研经费的月平均增长率为x,
则6月份投放科研经费1000(1+x)2=1000+500,
故选A.
【点睛】
考查一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
11、B
【解析】
试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.
考点:一元二次方程根的判别式.
12、D
【解析】
主视图是从前向后看,即可得图像.
【详解】
主视图是一个矩形和一个三角形构成.故选D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
试题分析:如图,延长CF交AB于点G,
∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,
∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.
又∵点D是BC中点,∴DF是△CBG的中位线.
∴DF=BG=(AB﹣AG)=(AB﹣AC)=1.
14、cm
【解析】
试题分析:把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.设此圆锥的底面半径为r,
根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=, r=cm.
考点:圆锥侧面展开扇形与底面圆之间的关系
15、6.2
【解析】
根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.
【详解】
解:在Rt△ABC中,
∵∠ACB=90°,
∴BC=AB•sin∠BAC=12×0.515≈6.2(米),
答:大厅两层之间的距离BC的长约为6.2米.
故答案为:6.2.
【点睛】
本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.
16、(1)4;(2)见解析;
【解析】
解:(1)由勾股定理可得OM的长度
(2)取格点 F , E, 连接 EF , 得到点 N ,取格点S, T, 连接ST, 得到点R, 连接NR交OM于P,则点P即为所求。
【详解】
(1)OM==4;
故答案为4.
(2)以点O为原点建立直角坐标系,则A(1,0),B(4,0),设P(a,a),(0≤a≤4),
∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,
∴PA2+PB2=4(a﹣)2+,
∵0≤a≤4,
∴当a=时,PA2+PB2 取得最小值,
综上,需作出点P满足线段OP的长=;
取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR交OM于P,
则点P即为所求.
【点睛】(1) 根据勾股定理即可得到结论;
(2) 取格点F, E, 连接EF, 得到点N, 取格点S, T,连接ST, 得到点R, 连接NR即可得到结果.
17、x≥1
【解析】
把y=2代入y=x+1,得x=1,
∴点P的坐标为(1,2),
根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n相应的函数值,
因而不等式x+1≥mx+n的解集是:x≥1,
故答案为x≥1.
【点睛】
本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.
18、3
【解析】
由折叠前后图形全等,可将阴影部分图形的周长转化为三角形周长.
【详解】
∵△A'DE与△ADE关于直线DE对称,
∴AD=A'D,AE=A'E,
C阴影=BC+A'D+A'E+BD+EC= BC+AD+AE+BD+EC =BC+AB+AC=3cm.
故答案为3.
【点睛】
由图形轴对称可以得到对应的边相等、角相等.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.
【解析】
解:在Rt△BAE中,∠BAE=680,BE=162米,∴(米).
在Rt△DEC中,∠DGE=600,DE=176.6米,∴(米).
∴(米).
∴工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.
在Rt△BAE和Rt△DEC中,应用正切函数分别求出AE和CE的长即可求得AC的长.
20、证明见解析
【解析】
根据平行四边形性质推出AB=CD,AB∥CD,得出∠EBA=∠FDC,根据SAS证两三角形全等即可解决问题.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠EBA=∠FDC,
∵DE=BF,
∴BE=DF,
∵在△ABE和△CDF中
,
∴△ABE≌△CDF(SAS),
∴AE=CF,∠E=∠F,
∴AE∥CF.
【点睛】
本题考查了平行四边形的性质和全等三角形的判定的应用,解题的关键是准确寻找全等三角形解决问题.
21、1 2 3 n2 n2 +x-n
【解析】
分析:(1)、首先根据题意得出前6个“三角形数”分别是多少,从而得出a的值;前5个“正方形数”分别是多少,从而得出b的值;前4个“正方形数”分别是多少,从而得出c的值;(2)、根据前面得出的一般性得出答案.
详解:(1)∵前6个“三角形数”分别是:1=、3=、6=、10=、15=、21=,
∴第n个“三角形数”是, ∴a=7×82=17×82=1.
∵前5个“正方形数”分别是: 1=12,4=22,9=32,16=42,25=52,
∴第n个“正方形数”是n2, ∴b=62=2.
∵前4个“正方形数”分别是:1=,5=,12=,22=,
∴第n个“五边形数”是n(3n−1)2n(3n−1)2, ∴c==3.
(2)第n个“正方形数”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,…,
∴第n个“五边形数”是n2+x-n.
点睛:此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
22、(1);(2)选择乙印刷厂比较优惠.
【解析】
(1)根据题意直接写出两厂印刷厂的收费y甲(元)关于印刷数量x(份)之间的函数关系式;
(2)分别将两厂的印刷费用等于2000元,分别解得两厂印刷的份数即可.
【详解】
(1)根据题意可知:
甲印刷厂的收费y甲=0.3x×0.9+100=0.27x+100,y关于x的函数关系式是y甲=0.27x+100(x>0);
(2)由题意可得:该学校需要印刷艺术节的宣传资料600份,在甲印刷厂需要花费:0.27×600+100=262(元),在乙印刷厂需要花费:100+200×0.3+0.3×0.8×(600﹣200)=256(元).
∵256<262,∴如果该学校需要印刷艺术节的宣传资料600份,那么应该选择乙印刷厂比较优惠.
【点睛】
本题考查了一次函数的实际应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,属于中档题.
23、 (1)证明见解析;(2)1-π.
【解析】
(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;
(2)分别求出△ACB的面积和扇形DCE的面积,即可得出答案.
【详解】
(1)过C作CF⊥AB于F.
∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.
∵△ACB的面积S,∴CF2,∴CF为⊙C的半径.
∵CF⊥AB,∴AB为⊙C的切线;
(2)图中阴影部分的面积=S△ACB﹣S扇形DCE1﹣π.
【点睛】
本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.
24、(1);(2)见解析;(3)
【解析】
(1) AB是⊙O的直径,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;
(2)连接OD,由已知条件证明AC∥OD,又DE⊥AC,可得DE是⊙O的切线;
(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的长.
【详解】
解:(1)∵AB是⊙O的直径,
∴∠ADB=90°,
∵AB=AC,
∴∠BAD=∠CAD,
∵DE⊥AC,
∴∠AFD=90°,
∴∠ADF=∠B,
∴tan∠ADF=tan∠B==;
(2)连接OD,
∵OD=OA,
∴∠ODA=∠OAD,
∵∠OAD=∠CAD,
∴∠CAD=∠ODA,
∴AC∥OD,
∵DE⊥AC,
∴OD⊥DE,
∴DE是⊙O的切线;
(3)设AD=x,则BD=2x,
∴AB=x=10,
∴x=2,
∴AD=2,
同理得:AF=2,DF=4,
∵AF∥OD,
∴△AFE∽△ODE,
∴,
∴=,
∴EF=.
【点睛】
本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视.
25、(1)24.2米(2) 超速,理由见解析
【解析】
(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.
(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.
【详解】
解:(1)由題意得,
在Rt△ADC中,,
在Rt△BDC中,,
∴AB=AD-BD=(米).
(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),
∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.
∵43.56千米/小时大于40千米/小时,
∴此校车在AB路段超速.
26、(1)证明见解析(2)
【解析】
试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;
(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.
试题解析:(1)证明:因为四边形ABCD是矩形,
所以AD∥BC,
所以∠PDO=∠QBO,
又因为O为BD的中点,
所以OB=OD,
在△POD与△QOB中,
∠PDO=∠QBO,OB=OD,∠POD=∠QOB,
所以△POD≌△QOB,
所以OP=OQ.
(2)解:PD=8-t,
因为四边形PBQD是菱形,
所以PD=BP=8-t,
因为四边形ABCD是矩形,
所以∠A=90°,
在Rt△ABP中,
由勾股定理得:,
即,
解得:t=,
即运动时间为秒时,四边形PBQD是菱形.
考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.
27、(1)1365.45、414.4(2)93.79(3)30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%(4)
【解析】
(1)由图1可得答案;
(2)根据中位数的定义求解可得;
(3)由近3年平均涨幅在30%左右即可做出估计;
(4)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.
【详解】
(1)2018年首次突破了“千万”大关,达到1365.45万人次,比2017年春节假日增加1365.45﹣951.05=414.4万人次.
故答案为:1365.45、414.4;
(2)这组数据的中位数是=93.79万人次,
故答案为:93.79;
(3)2019年春节假日山西旅游总收入比2018年同期增长的百分率约为30%,理由是:近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%,
故答案为:30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%.
(4)画树状图如下:
则共有12种等可能的结果数,其中送给好朋友的两枚书签中恰好有“剪纸艺术”的结果数为6,
所以送给好朋友的两枚书签中恰好有“剪纸艺术”的概率为.
【点睛】
本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率,也考查了条形统计图与样本估计总体.
相关试卷
这是一份山东省淄博沂源县联考2021-2022学年中考数学猜题卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份山东省青岛五校联考2021-2022学年中考猜题数学试卷含解析,共22页。试卷主要包含了已知,在中,,,下列结论中,正确的是,如图,空心圆柱体的左视图是等内容,欢迎下载使用。
这是一份2021-2022学年山东省博兴县中考猜题数学试卷含解析,共25页。试卷主要包含了答题时请按要求用笔,函数中,x的取值范围是等内容,欢迎下载使用。