|试卷下载
终身会员
搜索
    上传资料 赚现金
    山东省烟台市2021-2022学年中考猜题数学试卷含解析
    立即下载
    加入资料篮
    山东省烟台市2021-2022学年中考猜题数学试卷含解析01
    山东省烟台市2021-2022学年中考猜题数学试卷含解析02
    山东省烟台市2021-2022学年中考猜题数学试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省烟台市2021-2022学年中考猜题数学试卷含解析

    展开
    这是一份山东省烟台市2021-2022学年中考猜题数学试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,有下列四个命题等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )

    A.8,9 B.8,8.5 C.16,8.5 D.16,10.5
    2.某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )
    A.平均数变小,方差变小 B.平均数变小,方差变大
    C.平均数变大,方差变小 D.平均数变大,方差变大
    3.下列计算正确的是(  )
    A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2
    C.a2•a3=a6 D.﹣3a2+2a2=﹣a2
    4.下列实数中,最小的数是(  )
    A. B. C.0 D.
    5.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是(  )
    A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm2
    6.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( )

    A.O1 B.O2 C.O3 D.O4
    7.一个多边形的内角和比它的外角和的倍少180°,那么这个多边形的边数是( )
    A.7 B.8 C.9 D.10
    8.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有(  )
    A.1个 B.2个 C.3个 D.4个
    9.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5 ,则∠B的度数是(    )

    A.30° B.45° C.50° D.60°
    10.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是(  )

    A.选科目E的有5人
    B.选科目A的扇形圆心角是120°
    C.选科目D的人数占体育社团人数的
    D.据此估计全校1000名八年级同学,选择科目B的有140人
    11.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是(  )

    A. B. C. D.
    12.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( )
    A.2.8×103 B.28×103 C.2.8×104 D.0.28×105
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若一个多边形的内角和为1080°,则这个多边形的边数为__________.
    14.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是  尺. 

    15.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=________cm.

    16.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m、n的式子表示AB的长为______.

    17.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘﹣131,其 浓度为0.0000872贝克/立方米.数据“0.0000872”用科学记数法可表示为________.
    18.已知矩形ABCD,AD>AB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_______________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,已知点E,F分别是▱ABCD的对角线BD所在直线上的两点,BF=DE,连接AE,CF,求证:CF=AE,CF∥AE.

    20.(6分)先化简,再求值:(x+1y)1﹣(1y+x)(1y﹣x)﹣1x1,其中x=+1,y=﹣1.
    21.(6分)“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为 ,并补全条形统计图;该区今年共种植月季8000株,成活了约 株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.

    22.(8分)已知函数的图象与函数的图象交于点.
    (1)若,求的值和点P的坐标;
    (2)当时,结合函数图象,直接写出实数的取值范围.
    23.(8分)有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象.图②分别表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)与工作时间t(时)的函数图象.
    (1)求甲5时完成的工作量;
    (2)求y甲、y乙与t的函数关系式(写出自变量t的取值范围);
    (3)求乙提高工作效率后,再工作几个小时与甲完成的工作量相等?

    24.(10分)十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:
    表1全国森林面积和森林覆盖率
    清查次数

    (1976年)

    (1981年)

    (1988年)

    (1993年)

    (1998年)

    (2003年)

    (2008年)

    (2013年)
    森林面积(万公顷)
    12200
    1150
    12500
    13400
    15894. 09
    17490.92
    19545.22
    20768.73
    森林覆盖率
    12.7%
    12%
    12.98%
    13.92%
    16.55%
    18.21%
    20.36%
    21.63%
    表2北京森林面积和森林覆盖率
    清查次数

    (1976年)

    (1981年)

    (1988年)

    (1993年)

    (1998年)

    (2003年)

    (2008年)

    (2013年)
    森林面积(万公顷)




    33.74
    37.88
    52.05
    58.81
    森林覆盖率
    11.2%
    8.1%
    12.08%
    14.99%
    18.93%
    21.26%
    31.72%
    35.84%
    (以上数据来源于中国林业网)
    请根据以上信息解答下列问题:
    (1)从第   次清查开始,北京的森林覆盖率超过全国的森林覆盖率;
    (2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;

    (3)第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到   万公顷(用含a和b的式子表示).
    25.(10分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:
    品名
    猕猴桃
    芒果
    批发价元千克
    20
    40
    零售价元千克
    26
    50
    他购进的猕猴桃和芒果各多少千克?
    如果猕猴桃和芒果全部卖完,他能赚多少钱?
    26.(12分)如图,已知平行四边形ABCD,将这个四边形折叠,使得点A和点C重合,请你用尺规做出折痕所在的直线。(保留作图痕迹,不写做法)

    27.(12分)如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.
    (1)求证:BE=CE
    (2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)
    ①求证:△BEM≌△CEN;
    ②若AB=2,求△BMN面积的最大值;
    ③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    根据中位数、众数的概念分别求得这组数据的中位数、众数.
    【详解】
    解:众数是一组数据中出现次数最多的数,即8;
    而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.
    故选A.
    【点睛】
    考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.
    2、A
    【解析】
    分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.
    详解:换人前6名队员身高的平均数为==188,
    方差为S2==;
    换人后6名队员身高的平均数为==187,
    方差为S2==
    ∵188>187,>,
    ∴平均数变小,方差变小,
    故选:A.
    点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    3、D
    【解析】
    根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.
    【详解】
    故选项A错误,
    故选项B错误,
    故选项C错误,
    故选项D正确,
    故选:D.
    【点睛】
    考查整式的除法,完全平方公式,同底数幂相乘以及合并同类项,比较基础,难度不大.
    4、B
    【解析】
    根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.
    【详解】
    ∵<-2<0<,
    ∴最小的数是-π,
    故选B.
    【点睛】
    此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.
    5、A
    【解析】
    根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.
    【详解】
    ∵圆锥的轴截面是一个边长为3cm的等边三角形,
    ∴底面半径=1.5cm,底面周长=3πcm,
    ∴圆锥的侧面积=×3π×3=4.5πcm2,
    故选A.
    【点睛】
    此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.
    6、A
    【解析】
    试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.

    考点:平面直角坐标系.
    7、A
    【解析】
    设这个正多边形的边数是n,就得到方程,从而求出边数,即可求出答案.
    【详解】
    设这个多边形的边数为n,依题意得:
    180(n-2)=360×3-180,
    解之得
    n=7.
    故选A.
    【点睛】
    本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和与外角和,根据题目中的等量关系,构建方程求解即可.
    8、D
    【解析】
    根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.
    【详解】
    解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;
    ②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;
    ③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;
    ④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.
    故选:D.
    【点睛】
    本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.
    9、D
    【解析】
    根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.
    在直角三角形ACD中求出∠D.
    则sinD=
    ∠D=60°
    ∠B=∠D=60°.
    故选D.
    “点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.
    10、B
    【解析】
    A选项先求出调查的学生人数,再求选科目E的人数来判定,
    B选项先求出A科目人数,再利用×360°判定即可,
    C选项中由D的人数及总人数即可判定,
    D选项利用总人数乘以样本中B人数所占比例即可判定.
    【详解】
    解:调查的学生人数为:12÷24%=50(人),选科目E的人数为:50×10%=5(人),故A选项正确,
    选科目A的人数为50﹣(7+12+10+5)=16人,选科目A的扇形圆心角是×360°=115.2°,故B选项错误,
    选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的,故C选项正确,
    估计全校1000名八年级同学,选择科目B的有1000×=140人,故D选项正确;
    故选B.
    【点睛】
    本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息.
    11、A
    【解析】
    由三视图的俯视图,从左到右依次找到最高层数,再由主视图和俯视图之间的关系可知,最高层高度即为主视图高度.
    【详解】
    解:几何体从左到右的最高层数依次为1,2,3,
    所以主视图从左到右的层数应该为1,2,3,
    故选A.
    【点睛】
    本题考查了三视图的简单性质,属于简单题,熟悉三视图的概念,主视图和俯视图之间的关系是解题关键.
    12、C
    【解析】
    试题分析:28000=1.1×1.故选C.
    考点:科学记数法—表示较大的数.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    根据多边形内角和定理:(n﹣2)•110 (n≥3)可得方程110(x﹣2)=1010,再解方程即可.
    【详解】
    解:设多边形边数有x条,由题意得:
    110(x﹣2)=1010,
    解得:x=1,
    故答案为:1.
    【点睛】
    此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•110 (n≥3).
    14、1.
    【解析】
    试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为=1(尺).
    故答案为1.

    考点:平面展开最短路径问题
    15、3
    【解析】试题分析:根据点D为AB的中点可得:CD为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E、F分别为中点可得:EF为△ABC的中位线,根据中位线的性质可得:EF=AB=3.
    考点:(1)、直角三角形的性质;(2)、中位线的性质
    16、
    【解析】
    过点C作CE⊥CF延长BA交CE于点E,先求得DF的长,可得到AE的长,最后可求得AB的长.
    【详解】
    解:延长BA交CE于点E,设CF⊥BF于点F,如图所示.
    在Rt△BDF中,BF=n,∠DBF=30°,
    ∴.
    在Rt△ACE中,∠AEC=90°,∠ACE=45°,
    ∴AE=CE=BF=n,
    ∴.
    故答案为:.

    【点睛】
    此题考查解直角三角形的应用,解题的关键在于做辅助线.
    17、
    【解析】
    科学记数法的表示形式为ax10n的形式,其中1≤lal<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:0.0000872=
    故答案为:
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    18、8
    【解析】
    根据题意作出图形即可得出答案,
    【详解】
    如图,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,为等腰三角形,故有8个满足题意得点.

    【点睛】
    此题主要考查矩形的对称性,解题的关键是根据题意作出图形.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、证明见解析
    【解析】
    根据平行四边形性质推出AB=CD,AB∥CD,得出∠EBA=∠FDC,根据SAS证两三角形全等即可解决问题.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AB=CD,AB∥CD,
    ∴∠EBA=∠FDC,
    ∵DE=BF,
    ∴BE=DF,
    ∵在△ABE和△CDF中

    ∴△ABE≌△CDF(SAS),
    ∴AE=CF,∠E=∠F,
    ∴AE∥CF.
    【点睛】
    本题考查了平行四边形的性质和全等三角形的判定的应用,解题的关键是准确寻找全等三角形解决问题.
    20、﹣2
    【解析】
    【分析】先利用完全平方公式、平方差公式进行展开,然后合并同类项,最后代入x、y的值进行计算即可得.
    【详解】原式=x1+2xy+2y1﹣(2y1﹣x1)﹣1x1
    =x1+2xy+2y1﹣2y1+x1﹣1x1
    =2xy,
    当x=+1,y=﹣1时,
    原式=2×(+1)×(﹣1)
    =2×(3﹣2)
    =﹣2.
    【点睛】本题考查了整式的混合运算——化简求值,熟练掌握完全平方公式、平方差公式是解题的关键.
    21、 (1)72°,见解析;(2)7280;(3).
    【解析】
    (1)根据题意列式计算,补全条形统计图即可;
    (2)根据题意列式计算即可;
    (3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率.
    【详解】
    (1)扇形统计图中玉兰所对的圆心角为360°×(1-40%-15%-25%)=72°
    月季的株数为2000×90%-380-422-270=728(株),
    补全条形统计图如图所示:

    (2)月季的成活率为
    所以月季成活株数为8000×91%=7280(株).
    故答案为:7280.
    (3)由题意知,成活率较高的两类花苗是玉兰和月季,玉兰、月季、桂花、腊梅分别用A、B、C、D表示,画树状图如下:

    所有等可能的情况有12种,其中恰好选到成活率较高的两类花苗有2种.
    ∴P(恰好选到成活率较高的两类花苗)
    【点睛】
    此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.
    22、(1),,或;(2) .
    【解析】
    【分析】(1)将P(m,n)代入y=kx,再结合m=2n即可求得k的值,联立y=与y=kx组成方程组,解方程组即可求得点P的坐标;
    (2)画出两个函数的图象,观察函数的图象即可得.
    【详解】(1)∵函数的图象交于点,
    ∴n=mk,
    ∵m=2n,∴n=2nk,
    ∴k=,
    ∴直线解析式为:y=x,
    解方程组,得,,
    ∴交点P的坐标为:(,)或(-,-);
    (2)由题意画出函数的图象与函数的图象如图所示,
    ∵函数的图象与函数的交点P的坐标为(m,n),
    ∴当k=1时,P的坐标为(1,1)或(-1,-1),此时|m|=|n|,
    当k>1时,结合图象可知此时|m|<|n|,
    ∴当时,≥1.

    【点睛】本题考查了反比例函数与正比例函数的交点,待定系数法等,运用数形结合思想解题是关键.
    23、(1)1件;(2)y甲=30t(0≤t≤5);y乙=;(3)小时;
    【解析】
    (1)根据图①可得出总工作量为370件,根据图②可得出乙完成了220件,从而可得出甲5小时完成的工作量;(2)设y甲的函数解析式为y=kx+b,将点(0,0),(5,1)代入即可得出y甲与t的函数关系式;设y乙的函数解析式为y=mx(0≤t≤2),y=cx+d(2<t≤5),将点的坐标代入即可得出函数解析式;(3)联立y甲与改进后y乙的函数解析式即可得出答案.
    【详解】
    (1)由图①得,总工作量为370件,由图②可得出乙完成了220件,
    故甲5时完成的工作量是1.
    (2)设y甲的函数解析式为y=kt(k≠0),把点(5,1)代入可得:k=30
    故y甲=30t(0≤t≤5);
    乙改进前,甲乙每小时完成50件,所以乙每小时完成20件,
    当0≤t≤2时,可得y乙=20t;
    当2<t≤5时,设y=ct+d,将点(2,40),(5,220)代入可得:,
    解得:,
    故y乙=60t﹣80(2<t≤5).
    综上可得:y甲=30t(0≤t≤5);y乙=.
    (3)由题意得:,
    解得:t=,
    故改进后﹣2=小时后乙与甲完成的工作量相等.
    【点睛】
    本题考查了一次函数的应用,解题的关键是能读懂函数图象所表示的信息,另外要熟练掌握待定系数法求函数解析式的知识.
    24、(1)四;(2)见解析;(3) .
    【解析】
    (1)比较两个折线统计图,找出满足题意的调查次数即可;
    (2)描出第四次与第五次北京森林覆盖率,补全折线统计图即可;
    (3)根据第八次全面森林面积除以森林覆盖率求出全国总面积,除以第九次的森林覆盖率,即可得到结果.
    【详解】
    解:(1)观察两折线统计图比较得:从第四次清查开始,北京的森林覆盖率超过全国的森林覆盖率;
    故答案为四;
    (2)补全折线统计图,如图所示:

    (3)根据题意得:×27.15%=,
    则全国森林面积可以达到万公顷,
    故答案为.
    【点睛】
    此题考查了折线统计图,弄清题中的数据是解本题的关键.
    25、(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱.
    【解析】
    设购进猕猴桃x千克,购进芒果y千克,由总价单价数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;
    根据利润销售收入成本,即可求出结论.
    【详解】
    设购进猕猴桃x千克,购进芒果y千克,
    根据题意得:,
    解得:.
    答:购进猕猴桃20千克,购进芒果30千克.
    元.
    答:如果猕猴桃和芒果全部卖完,他能赚420元钱.
    【点睛】
    本题考查了二元一次方程组的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据数量关系,列式计算.
    26、答案见解析
    【解析】
    根据轴对称的性质作出线段AC的垂直平分线即可得.
    【详解】
    如图所示,直线EF即为所求.

    【点睛】
    本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的性质和线段中垂线的尺规作图.
    27、(1)详见解析;(1)①详见解析;②1;③.
    【解析】
    (1)只要证明△BAE≌△CDE即可;
    (1)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;
    ②构建二次函数,利用二次函数的性质即可解决问题;
    ③如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=m,EB=m.利用面积法求出EH,根据三角函数的定义即可解决问题.
    【详解】
    (1)证明:如图1中,

    ∵四边形ABCD是矩形,
    ∴AB=DC,∠A=∠D=90°,
    ∵E是AD中点,
    ∴AE=DE,
    ∴△BAE≌△CDE,
    ∴BE=CE.
    (1)①解:如图1中,

    由(1)可知,△EBC是等腰直角三角形,
    ∴∠EBC=∠ECB=45°,
    ∵∠ABC=∠BCD=90°,
    ∴∠EBM=∠ECN=45°,
    ∵∠MEN=∠BEC=90°,
    ∴∠BEM=∠CEN,
    ∵EB=EC,
    ∴△BEM≌△CEN;
    ②∵△BEM≌△CEN,
    ∴BM=CN,设BM=CN=x,则BN=4-x,
    ∴S△BMN=•x(4-x)=-(x-1)1+1,
    ∵-<0,
    ∴x=1时,△BMN的面积最大,最大值为1.
    ③解:如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=m,EB=m.

    ∴EG=m+m=(1+)m,
    ∵S△BEG=•EG•BN=•BG•EH,
    ∴EH==m,
    在Rt△EBH中,sin∠EBH=.
    【点睛】
    本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,

    相关试卷

    山东省威海市文登区2021-2022学年中考猜题数学试卷含解析: 这是一份山东省威海市文登区2021-2022学年中考猜题数学试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,下列说法正确的是等内容,欢迎下载使用。

    山东省青岛五校联考2021-2022学年中考猜题数学试卷含解析: 这是一份山东省青岛五校联考2021-2022学年中考猜题数学试卷含解析,共22页。试卷主要包含了已知,在中,,,下列结论中,正确的是,如图,空心圆柱体的左视图是等内容,欢迎下载使用。

    2021-2022学年山东省博兴县中考猜题数学试卷含解析: 这是一份2021-2022学年山东省博兴县中考猜题数学试卷含解析,共25页。试卷主要包含了答题时请按要求用笔,函数中,x的取值范围是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map