


2021-2022学年昆山市重点中学中考数学全真模拟试卷含解析
展开
这是一份2021-2022学年昆山市重点中学中考数学全真模拟试卷含解析,共26页。试卷主要包含了如图,在平面直角坐标系中,A等内容,欢迎下载使用。
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.第四届济南国际旅游节期间,全市共接待游客686000人次.将686000用科学记数法表示为( )
A.686×104 B.68.6×105 C.6.86×106 D.6.86×105
2.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是( )
A.0.15B.0.2C.0.25D.0.3
3.如图所示,把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,如果折叠后得等腰△EBA,那么结论中:①∠A=30°;②点C与AB的中点重合;③点E到AB的距离等于CE的长,正确的个数是( )
A.0B.1C.2D.3
4.如图,中,,且,设直线截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的
A.B.C.D.
5.如图,等腰△ABC的底边BC与底边上的高AD相等,高AD在数轴上,其中点A,D分别对应数轴上的实数﹣2,2,则AC的长度为( )
A.2B.4C.2D.4
6.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.
下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1.
其中合理的是( )
A.①B.②C.①②D.①③
7.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( )
A.O1B.O2C.O3D.O4
8.如图,将△ABC沿着DE剪成一个小三角形ADE和一个四边形D'E'CB,若DE∥BC,四边形D'E'CB各边的长度如图所示,则剪出的小三角形ADE应是( )
A.B.C.D.
9.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是( )
A. 或
B. 或
C. 或
D.
10.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积( )
A.11B.10C.9D.16
11.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )
A.B.C.D.
12.下列运算正确的是( )
A.a2•a3=a6B.()﹣1=﹣2C. =±4D.|﹣6|=6
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,点A为函数y=(x>0)图象上一点,连接OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.
14.如图,□ABCD中,E是BA的中点,连接DE,将△DAE沿DE折叠,使点A落在□ABCD内部的点F处.若∠CBF=25°,则∠FDA的度数为_________.
15.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数是_____.
16.某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为 ________元。
17.a(a+b)﹣b(a+b)=_____.
18.二次函数的图象与x轴有____个交点 .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣>0的解集.
20.(6分)已知:如图,在平面直角坐标系中,O为坐标原点,△OAB的顶点A、B的坐标分别是A(0,5),B(3,1),过点B画BC⊥AB交直线于点C,连结AC,以点A为圆心,AC为半径画弧交x轴负半轴于点D,连结AD、CD.
(1)求证:△ABC≌△AOD.
(2)设△ACD的面积为,求关于的函数关系式.
(3)若四边形ABCD恰有一组对边平行,求的值.
21.(6分)如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1.
(1)在图1中画出△AOB关于x轴对称的△A1OB1,并写出点A1,B1的坐标;
(2)在图2中画出将△AOB绕点O顺时针旋转90°的△A2OB2,并求出线段OB扫过的面积.
22.(8分)如图1,△ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN.
(1)求证:△PMN是等腰三角形;
(2)将△ADE绕点A逆时针旋转,
①如图2,当点D、E分别在边AC两侧时,求证:△PMN是等腰三角形;
②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,请直接写出此时BD的长.
23.(8分)解方程: +=1.
24.(10分)下表给出A、B、C三种上宽带网的收费方式:
设上网时间为t小时.
(I)根据题意,填写下表:
(II)设选择方式A方案的费用为y1元,选择方式B方案的费用为y2元,分别写出y1、y2与t的数量关系式;
(III)当75<t<100时,你认为选用A、B、C哪种计费方式省钱(直接写出结果即可)?
25.(10分)解方程:x2-4x-5=0
26.(12分)如图,是菱形的对角线,,(1)请用尺规作图法,作的垂直平分线,垂足为,交于;(不要求写作法,保留作图痕迹)在(1)条件下,连接,求的度数.
27.(12分)(1)化简:
(2)解不等式组.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据科学记数法的表示形式(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数)可得:
686000=6.86×105,
故选:D.
2、B
【解析】
读图可知:参加课外活动的人数共有(15+30+20+35)=100人,
其中参加科技活动的有20人,所以参加科技活动的频率是=0.2,
故选B.
3、D
【解析】
根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.
【详解】
∵把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰△EBA,
∴∠A=∠EBA,∠CBE=∠EBA,
∴∠A=∠CBE=∠EBA,
∵∠C=90°,
∴∠A+∠CBE+∠EBA=90°,
∴∠A=∠CBE=∠EBA=30°,故①选项正确;
∵∠A=∠EBA,∠EDB=90°,
∴AD=BD,故②选项正确;
∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,
∴EC=ED(角平分线上的点到角的两边距离相等),
∴点E到AB的距离等于CE的长,故③选项正确,
故正确的有3个.
故选D.
【点睛】
此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.
4、D
【解析】
Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.
【详解】
解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,
∴∠AOB=∠A=45°,
∵CD⊥OB,
∴CD∥AB,
∴∠OCD=∠A,
∴∠AOD=∠OCD=45°,
∴OD=CD=t,
∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).
故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;
故选D.
【点睛】
本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.
5、C
【解析】
根据等腰三角形的性质和勾股定理解答即可.
【详解】
解:∵点A,D分别对应数轴上的实数﹣2,2,
∴AD=4,
∵等腰△ABC的底边BC与底边上的高AD相等,
∴BC=4,
∴CD=2,
在Rt△ACD中,AC=,
故选:C.
【点睛】
此题考查等腰三角形的性质,注意等腰三角形的三线合一,熟练运用勾股定理.
6、B
【解析】
①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误,
故选B.
【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.
7、A
【解析】
试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.
考点:平面直角坐标系.
8、C
【解析】
利用相似三角形的性质即可判断.
【详解】
设AD=x,AE=y,
∵DE∥BC,
∴△ADE∽△ABC,
∴,
∴,
∴x=9,y=12,
故选:C.
【点睛】
考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
9、B
【解析】
试题解析:如图所示:
分两种情况进行讨论:
当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过△ABC区域(包括边界),的取值范围是:
当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过△ABC区域(包括边界),的取值范围是:
故选B.
点睛:二次函数 二次项系数决定了抛物线开口的方向和开口的大小,
开口向上,开口向下.
的绝对值越大,开口越小.
10、B
【解析】
根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.
【详解】
如图,∵四边形ABCD是矩形,
∴AD=BC,∠D=∠B=90°,
根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,
∴HC=BC,∠H=∠B,
又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,
∴∠HCE=∠BCF,
在△EHC和△FBC中,
∵,
∴△EHC≌△FBC,
∴BF=HE,
∴BF=HE=DE,
设BF=EH=DE=x,
则AF=CF=9﹣x,
在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,
解得:x=4,即DE=EH=BF=4,
则AG=DE=EH=BF=4,
∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,
∴EF2=EG2+GF2=32+12=10,
故选B.
【点睛】
本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.
11、A
【解析】
根据一次函数y=kx+b的图象可知k>1,b<1,再根据k,b的取值范围确定一次函数y=−bx+k图象在坐标平面内的位置关系,即可判断.
【详解】
解:∵一次函数y=kx+b的图象可知k>1,b<1,
∴-b>1,
∴一次函数y=−bx+k的图象过一、二、三象限,与y轴的正半轴相交,
故选:A.
【点睛】
本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b<1,一次函数y=kx+b图象过原点⇔b=1.
12、D
【解析】
运用正确的运算法则即可得出答案.
【详解】
A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.
【点睛】
本题考查了四则运算法则,熟悉掌握是解决本题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、6.
【解析】
作辅助线,根据反比例函数关系式得:S△AOD=, S△BOE=,再证明△BOE∽△AOD,由性质得OB与OA的比,由同高两三角形面积的比等于对应底边的比可以得出结论.
【详解】
如图,分别作BE⊥x轴,AD⊥x轴,垂足分别为点E、D,
∴BE∥AD,
∴△BOE∽△AOD,
∴,
∵OA=AC,
∴OD=DC,
∴S△AOD=S△ADC=S△AOC,
∵点A为函数y=(x>0)的图象上一点,
∴S△AOD=,
同理得:S△BOE=,
∴,
∴,
∴,
∴,
∴,
故答案为6.
14、50°
【解析】
延长BF交CD于G,根据折叠的性质和平行四边形的性质,证明△BCG≌△DAE,从而∠7=∠6=25°,进而可求∠FDA得度数.
【详解】
延长BF交CD于G
由折叠知,
BE=CF, ∠1=∠2, ∠7=∠8,
∴∠3=∠4.
∵∠1+∠2=∠3+∠4,
∴∠1=∠2=∠3=∠4,
∵CD∥AB,
∴∠3=∠5,
∴∠1=∠5,
在△BCG和△DAE中
∵∠1=∠5,
∠C=∠A,
BC=AD,
∴△BCG≌△DAE,
∴∠7=∠6=25°,
∴∠8=∠7=25°,
∴FDA=50°.
故答案为50°.
【点睛】
本题考查了折叠的性质,平行四边形的性质,全等三角形的判定与性质. 证明△BCG≌△DAE是解答本题的关键.
15、32°
【解析】
根据直径所对的圆周角是直角得到∠ADB=90°,求出∠A的度数,根据圆周角定理解答即可.
【详解】
∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠ABD=58°,
∴∠A=32°,
∴∠BCD=32°,
故答案为32°.
16、500
【解析】
设该品牌时装的进价为x元,根据题意列出方程,求出方程的解得到x的值,即可得到结果.
【详解】
解:设该品牌时装的进价为x元,根据题意得:1000×90%-x=80%x,解得:x=500,则该品牌时装的进价为500元.
故答案为:500.
【点睛】
本题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.
17、(a+b)(a﹣b).
【解析】
先确定公因式为(a+b),然后提取公因式后整理即可.
【详解】
a(a+b)﹣b(a+b)=(a+b)(a﹣b).
【点睛】
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
18、2
【解析】
【分析】根据一元二次方程x2+mx+m-2=0的根的判别式的符号进行判定二次函数y=x2+mx+m-2的图象与x轴交点的个数.
【详解】二次函数y=x2+mx+m-2的图象与x轴交点的纵坐标是零,
即当y=0时,x2+mx+m-2=0,
∵△=m2-4(m-2)=(m-2)2+4>0,
∴一元二次方程x2+mx+m-2=0有两个不相等是实数根,
即二次函数y=x2+mx+m-2的图象与x轴有2个交点,
故答案为:2.
【点睛】本题考查了抛物线与x轴的交点.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.
△=b2-4ac决定抛物线与x轴的交点个数.
△=b2-4ac>0时,抛物线与x轴有2个交点;
△=b2-4ac=0时,抛物线与x轴有1个交点;
△=b2-4ac<0时,抛物线与x轴没有交点.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)反比例函数解析式为y=﹣,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.
【解析】
试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;
(1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;
(3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.
试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;
(1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;
(3)由图可得,不等式的解集为:x<﹣4或0<x<1.
考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.
20、(1)证明详见解析;(2)S=(m+1)2+(m>);(2)2或1.
【解析】
试题分析:(1)利用两点间的距离公式计算出AB=5,则AB=OA,则可根据“HL”证明△ABC≌△AOD;
(2)过点B作直线BE⊥直线y=﹣m于E,作AF⊥BE于F,如图,证明Rt△ABF∽Rt△BCE,利用相似比可得BC=(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+(m+1)2,然后证明△AOB∽△ACD,利用相似的性质得,而S△AOB=,于是可得S=(m+1)2+(m>);
(2)作BH⊥y轴于H,如图,分类讨论:当AB∥CD时,则∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函数得到tan∠AOB=2,tan∠ACB=,所以=2;当AD∥BC,则∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,则∠ACB=∠4,根据三角函数定义得到tan∠4=,tan∠ACB=,则=,然后分别解关于m的方程即可得到m的值.
试题解析:(1)证明:∵A(0,5),B(2,1),
∴AB==5,
∴AB=OA,
∵AB⊥BC,
∴∠ABC=90°,
在Rt△ABC和Rt△AOD中,
,
∴Rt△ABC≌Rt△AOD;
(2)解:过点B作直线BE⊥直线y=﹣m于E,作AF⊥BE于F,如图,∵∠1+∠2=90°,∠1+∠2=90°,
∴∠2=∠2,
∴Rt△ABF∽Rt△BCE,
∴,即,
∴BC=(m+1),
在Rt△ACB中,AC2=AB2+BC2=25+(m+1)2,
∵△ABC≌△AOD,
∴∠BAC=∠OAD,即∠4+∠OAC=∠OAC+∠5,
∴∠4=∠5,
而AO=AB,AD=AC,
∴△AOB∽△ACD,
∴=,
而S△AOB=×5×2=,
∴S=(m+1)2+(m>);
(2)作BH⊥y轴于H,如图,
当AB∥CD时,则∠ACD=∠CAB,
而△AOB∽△ACD,
∴∠ACD=∠AOB,
∴∠CAB=∠AOB,
而tan∠AOB==2,tan∠ACB===,
∴=2,解得m=1;
当AD∥BC,则∠5=∠ACB,
而△AOB∽△ACD,
∴∠4=∠5,
∴∠ACB=∠4,
而tan∠4=,tan∠ACB=,
∴=,
解得m=2.
综上所述,m的值为2或1.
考点:相似形综合题.
21、(1)A1(﹣1,﹣2),B1(2,﹣1);(2).
【解析】
(1)根据轴对称性质解答点关于x轴对称横坐标不变,纵坐标互为相反数;
(2)根据旋转变换的性质、扇形面积公式计算.
【详解】
(1)如图所示:
A1(﹣1,﹣2),B1(2,﹣1);
(2)将△AOB绕点O顺时针旋转90°的△A2OB2如图所示:
线段OB扫过的面积为:
【点睛】
此题主要考查了图形的旋转以及位似变换和轴对称变换等知识,根据题意得出对应点坐标位置是解题关键.
22、(1)见解析;(2)①见解析;②.
【解析】
(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论PM=PN;
(2)①先证明△ABD≌△ACE,得BD=CE,同理根据三角形中位线定理可得结论;
②如图4,连接AM,计算AN和DE、EM的长,如图3,证明△ABD≌△CAE,得BD=CE,根据勾股定理计算CM的长,可得结论
【详解】
(1)如图1,∵点N,P是BC,CD的中点,
∴PN∥BD,PN=BD,
∵点P,M是CD,DE的中点,
∴PM∥CE,PM=CE,
∵AB=AC,AD=AE,
∴BD=CE,
∴PM=PN,
∴△PMN是等腰三角形;
(2)①如图2,∵∠DAE=∠BAC,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE,
∵点M、N、P分别是线段DE、BC、CD的中点,
∴PN=BD,PM=CE,
∴PM=PN,
∴△PMN是等腰三角形;
②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△CAE,
∴BD=CE,
如图4,连接AM,
∵M是DE的中点,N是BC的中点,AB=AC,
∴A、M、N共线,且AN⊥BC,
由勾股定理得:AN==4,
∵AD=AE=1,AB=AC=6,
∴=,∠DAE=∠BAC,
∴△ADE∽△AEC,
∴,
∴,
∴AM=,DE=,
∴EM=,
如图3,Rt△ACM中,CM===,
∴BD=CE=CM+EM=.
【点睛】
此题是三角形的综合题,主要考查了三角形的中位线定理,等腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)①的关键是判断出△ABD≌△ACE,解(2)②的关键是判断出△ADE∽△AEC
23、-3
【解析】
试题分析:解得x=-3
经检验: x=-3是原方程的根.
∴原方程的根是x=-3
考点:解一元一次方程
点评:在中考中比较常见,在各种题型中均有出现,一般难度不大,要熟练掌握.
24、(I)见解析;(II)见解析;(III)见解析.
【解析】
(I)根据两种方式的收费标准分别计算,填表即可;
(II)根据表中给出A,B两种上宽带网的收费方式,分别写出y1、y2与t的数量关系式即可;
(III)计算出三种方式在此取值范围的收费情况,然后比较即可得出答案.
【详解】
(I)当t=40h时,方式A超时费:0.05×60(40﹣25)=45,总费用:30+45=75,
当t=100h时,方式B超时费:0.05×60(100﹣50)=150,总费用:50+150=200,
填表如下:
(II)当0≤t≤25时,y1=30,
当t>25时,y1=30+0.05×60(t﹣25)=3t﹣45,
所以y1=;
当0≤t≤50时,y2=50,
当t>50时,y2=50+0.05×60(t﹣50)=3t﹣100,
所以y2=;
(III)当75<t<100时,选用C种计费方式省钱.理由如下:
当75<t<100时,y1=3t﹣45,y2=3t﹣100,y3=120,
当t=75时,y1=180,y2=125,y3=120,
所以当75<t<100时,选用C种计费方式省钱.
【点睛】
本题考查了一次函数的应用,解答时理解三种上宽带网的收费标准进而求出函数的解析式是解题的关键.
25、x1 ="-1," x2 =5
【解析】
根据十字相乘法因式分解解方程即可.
26、(1)答案见解析;(2)45°.
【解析】
(1)分别以A、B为圆心,大于长为半径画弧,过两弧的交点作直线即可;
(2)根据∠DBF=∠ABD﹣∠ABF计算即可;
【详解】
(1)如图所示,直线EF即为所求;
(2)∵四边形ABCD是菱形,
∴∠ABD=∠DBC∠ABC=75°,DC∥AB,∠A=∠C,
∴∠ABC=150°,∠ABC+∠C=180°,
∴∠C=∠A=30°.
∵EF垂直平分线段AB,
∴AF=FB,
∴∠A=∠FBA=30°,
∴∠DBF=∠ABD﹣∠FBE=45°.
【点睛】
本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.
27、(1);(2)﹣2<x
相关试卷
这是一份洛阳市重点中学2021-2022学年中考数学全真模拟试题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,化简,若=1,则符合条件的m有,某市2017年国内生产总值等内容,欢迎下载使用。
这是一份临沧市重点中学2021-2022学年中考数学全真模拟试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列算式的运算结果正确的是,已知方程组,那么x+y的值,反比例函数是y=的图象在等内容,欢迎下载使用。
这是一份2021-2022学年青岛市重点中学中考数学全真模拟试卷含解析,共25页。
