终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022-2023年高考数学压轴题专项练习 专题3 直击函数压轴题中零点问题(试题+解析版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      2022-2023年高考数学压轴题专项练习 专题3 直击函数压轴题中零点问题(解析版).doc
    • 练习
      2022-2023年高考数学压轴题专项练习 专题3 直击函数压轴题中零点问题(试题版).doc
    2022-2023年高考数学压轴题专项练习 专题3 直击函数压轴题中零点问题(解析版)第1页
    2022-2023年高考数学压轴题专项练习 专题3 直击函数压轴题中零点问题(解析版)第2页
    2022-2023年高考数学压轴题专项练习 专题3 直击函数压轴题中零点问题(解析版)第3页
    2022-2023年高考数学压轴题专项练习 专题3 直击函数压轴题中零点问题(试题版)第1页
    2022-2023年高考数学压轴题专项练习 专题3 直击函数压轴题中零点问题(试题版)第2页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023年高考数学压轴题专项练习 专题3 直击函数压轴题中零点问题(试题+解析版)

    展开

    这是一份2022-2023年高考数学压轴题专项练习 专题3 直击函数压轴题中零点问题(试题+解析版),文件包含2022-2023年高考数学压轴题专项练习专题3直击函数压轴题中零点问题解析版doc、2022-2023年高考数学压轴题专项练习专题3直击函数压轴题中零点问题试题版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
     一、解答题1已知函数.(1)讨论的单调性;(2)若在区间内有唯一的零点,证明:.【答案】(1)答案见解析;(2)证明见解析.【解析】试题分析:1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
    2依题可知,若在区间内有唯一的零点,由(1)可知于是:①,由①②得g(x)lnx(x(01)),求出函数的导数,根据函数的单调性证明即可.(2)依题可知,若在区间内有唯一的零点,由(1)可知于是:由①②得,设,因此上单调递减,根据零点存在定理,故.点睛:本题考查了函数的单调性,零点问题,考查导数的应用以及不等式的证明,零点存在性定理,考查分类讨论思想,转化思想,构造函数的解题方法.2设函数f(x)=x2bx-1(bR).(1)当b=1时证明:函数f(x)在区间内存在唯一零点;(2)若当x∈[1,2],不等式f(x)<1有解.求实数b的取值范围.【答案】(1)见解析;(2)【解析】试题分析:(1)先根据对称轴与定义区间位置关系确定函数f(x)在区间单调性,再根据区间端点函数值异号,结合零点存在定理确定零点个数(2)先分离变量化为对应函数最值问题: ,再根据函数单调性确定函数最小值,即得实数b的取值范围.(2)由题意可知x2bx-1<1在区间[1,2]上有解,所以b<x在区间[1,2]上有解.g(x)=x,可得g(x)在区间[1,2]上递减,所以b<g(x)maxg(1)=2-1=1 ,从而实数b的取值范围为(-∞,1)点睛:利用零点存在性定理不仅要求函数的图象在区间[ab]上是连续不断的曲线,且f(af(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点3已知函数.(1),判断函数的零点个数;2若对任意实数,函数恒有两个相异的零点,求实数的取值范围;(3)已知R,求证:方程在区间上有实数根.【答案】见解析;;⑶见解析.【解析】试题分析:(1)利用判别式定二次函数的零点个数:(2)零点个数问题转化为图象交点个数问题,利用判别式处理即可;(3方程在区间上有实数根,即有零点,结合零点存在定理可以证明.试题解析:,时,,函数有一个零点; 时,,函数有两个零点⑶设, 在区间上有实数根,即方程在区间上有实数根. 点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.4已知函数图象上一点处的切线方程为.(1)求的值;(2)若方程内有两个不等实根,求的取值范围(其中为自然对数的底).【答案】(1)a=2,b=1.(2) .【解析】试题分析:本题考查函数与方程,函数与导数的综合应用.(1)根据导数的几何意义,得出两个方程,然后求解.(2)先利用导数研究函数h(x)=f(x)+m=2lnxx2+m的单调性,根据单调性与极值点确定关系然后求解.(2)(1)f(x)=2lnxx2h(x)=f(x)+m=2lnxx2+mh'(x)=0,得x=1(x=﹣1舍去)故当x时,h'(x)0h(x)单调递增;x(1e]时,h'(x)<0h(x)单调递减∵方程h(x)=0内有两个不等实根,,解得∴实数的取值范围为.点睛:根据函数零点求参数取值或范围的方法(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)利用方程根的分布求解,转化为不等式问题.(4)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.5已知函数,其中为自然对数的底数,I)若,函数①求函数的单调区间②若函数的值域为,求实数的取值范围II)若存在实数,使得,且,求证:【答案】(1)①详见解析②实数的取值范围是;(2)试题解析:(1)当时,..,由.所以函数的单调增区间为,单调减区间为.时,,所以在区间上单调递减;时,,所以在区间上单调递增.上单调递减,值域为,因为的值域为,所以.   (2).时,,此时上单调递增.可得,与相矛盾,同样不能有.不妨设,则有.因为上单调递减,在上单调递增,且所以当时,.,且,可得.单调递减,且,所以所以,同理.解得所以.点睛:本题考查函数的单调性极值及恒成立问题,涉及函数不等式的证明,综合性强,难度大,属于难题.处理导数大题时,注意分层得分的原则,力争第一二问答对,第三问争取能写点,一般涉及求函数单调性及极值时,比较容易入手,求导后注意分类讨论,对于恒成立问题一般要分离参数,然后利用函数导数求函数的最大值或最小值,对于含有不等式的函数问题,一般要构造函数,利用函数的单调性来解决,但涉及技巧比较多,需要多加体会.6已知函数.1)当时,求上的值域;2)试求的零点个数,并证明你的结论.【答案】12)当时,只有一个零点;当时,有两个零点.2)原方程等价于实根的个数,原命题也等价于上的零点个数,讨论,三种情况,分别利用导数研究函数的单调性,结合函数图象与零点存在定理可得结果.试题解析:1)当时,,则上恒成立,所以上递减,所以上存在唯一的,使得,而且时,递增;当递减;所以,当时,取极大值,也是最大值,即所以,上的值域为.I)若,则时,恒成立,则没有零点;时,,又上单调递增的,所以有唯一的零点。II)若,则时,恒成立,则没有零点;时,,又上单调递增的,所以有唯一的零点III)若,则时,由,则,则,又,所以有唯一的零点,时,,又上单调递增的,所以有唯一的零点综上所述,当时,只有一个零点;当时,有两个零点.7已知函数1若不等式恒成立,则实数的取值范围;2在(1)中,取最小值时,设函数.若函数在区间上恰有两个零点,求实数的取值范围;(3)证明不等式:).【答案】(1);(2);(3)证明见解析.(2)由(1)可知,,当时,在区间上恰有两个零点,即关于的方程在区间上恰有两个实数根. 整理方程得,,令, 令,于是上单调递增.因为,当时,,从而单调递减,时,,从而单调递增,  因为,所以实数的取值范围是.   (3)由(1)可知,当时,有当且仅当时取等号.,则有,其中.  整理得:   时,上面个式子累加得:..命题得证8已知函数其中.1)设讨论的单调性;2)若函数内存在零点,求的范围.【答案】(1)见解析;(2)的取值范围是.解析:(1)定义域  ,则  上单调递减;,则  .i) 当 时,则   ,因此在 上恒有 ,即 上单调递减;ii)当时,,因而在上有,在上有  ;因此 上单调递减,在单调递增.ii)当,考察函数 ,由于 上必存在零点.设的第一个零点为,则当时,,故 上为减函数,又 所以当 时, ,从而 上单调递减,故在 上恒有 。即 ,注意到 ,因此,令时,则有,由零点存在定理可知函数 上有零点,符合题意.点睛:导数中函数的含参数的问题的讨论,需要考虑下面的几个方面:(1)把导函数充分变形,找出决定导数符号的核心代数式,讨论其零点是否存在,零点是否在给定的范围中;(2)零点不容易求得时,需要结合原函数的形式去讨论,有时甚至需要把原函数放缩去讨论,常见的放缩有等;(3)如果导数也比较复杂,可以进一步求导,讨论导函数的导数.9设函数).(1)当时,若函数的图象在处有相同的切线,求的值;(2)当时,若对任意和任意,总存在不相等的正实数,使得,求的最小值;(3)当时,设函数的图象交于两点.求证:.【答案】(1)(2)(3)见解析【解析】试题分析:(1)由导数几何意义可得,又,解方程组可得的值;(2)先转化条件为对应方程有两个不等实根,再根据实根分布充要条件列不等式组,解得的最小值;(3)先根据零点表示b,代入要证不等式化简得.再构造函数,以及,结合导数研究其单调性,即证得结论(2)当时,则,又,设则题意可转化为方程上有相异两实根  即关于的方程上有相异两实根所以,得所以恒成立.                      因为,所以(当且仅当时取等号),,所以的取值范围是,所以的最小值为.                                                       (3)当时,因为函数的图象交于两点,所以,两式相减,得.           要证明,即证即证,即证.                 ,则,此时即证,所以,所以当时,函数单调递增.,所以,即成立;再令,所以,所以当时,函数单调递减,,所以,即也成立.综上所述, 实数满足.点睛:利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.10已知函数.(Ⅰ)讨论的单调性;(Ⅱ)当函数有两个不相等的零点时,证明:  .【答案】(1)见解析(2)见解析试题解析:(Ⅰ)当时,单调递增;时,单调递减;单调递增;点睛:利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.11已知(1)讨论的单调性;(2)若存在及唯一正整数,使得,求的取值范围.【答案】(1)的单调递减区间是,单调递增区间是;(2) 的取值范围是.【解析】试题分析(1)          求出函数的导函数,通过对导函数符号的讨论可得函数的单调性.(2)由题意得函数上的值域为.结合题意可将问题转化为当时,满足的正整数解只有1个.通过讨论的单调性可得只需满足,由此可得所求范围.(2)          (2)由(1)知当时,取得最小值,所以上的值域为因为存在及唯一正整数,使得所以满足的正整数解只有1个.因为所以所以上单调递增,在上单调递减,所以,即解得所以实数的取值范围是点睛:本题中研究方程根的情况时,通过导数研究函数的单调性、最大(小)值、函数图象的变化趋势等,根据题目画出函数图象的草图,通过数形结合的思想去分析问题,使问题的解决有一个直观的形象,然后在此基础上再转化为不等式(组)的问题,通过求解不等式可得到所求的参数的取值(或范围).12设函数.1)求函数的单调区间;2)若存在满足.求证(其中的导函数【答案】1见解析2见解析试题解析:(1)由题知.,此时函数单调递增,在单调递减.,此时函数单调递增.(2)因为,由1不妨设,由所以.总成立原题得证.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用13已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)当时,若上有零点,求实数的取值范围.【答案】(Ⅰ)见解析(Ⅱ)试题解析:解:(Ⅰ)函数的定义域为..时,上恒成立,所以的单调递减区间是,没有单调递增区间.时,的变化情况如下表:所以的单调递增区间是,单调递减区间是.时,的变化情况如下表:所以的单调递增区间是,单调递减区间是.点睛根据函数零点求参数取值,也是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.14已知函数,其中为自然对数的底数.(1)若函数在区间上是单调函数,试求实数的取值范围;(2)已知函数,且,若函数在区间上恰有3个零点,求实数的取值范围.【答案】(1) (2) 【解析】试题分析:(1)函数在区间上单调递增等价于在区间上恒成立,可得,函数在区间单调递减等价于在区间上恒成立,可得,综合两种情况可得结果;(2),由,知在区间内恰有一个零点,设该零点为,则在区间内不单调,所以在区间内存在零点,同理,在区间内存在零点,所以只需在区间内恰有两个零点即可,利用导数研究函数的单调性,结合函数单调性讨论的零点,从而可得结果.(2),知在区间内恰有一个零点,设该零点为,则在区间内不单调,所以在区间内存在零点同理,在区间内存在零点所以在区间内恰有两个零点.由(1)知,当时,在区间上单调递增,故在区间内至多有一个零点,不合题意.时,在区间上单调递减,内至多有一个零点,不合题意;所以 15已知函数其中.1)设讨论的单调性;2)若函数内存在零点,求的范围.【答案】(1)见解析;(2)的取值范围是.【解析】试题分析:(1)求导可以得到,分三种情况讨论导数的符号.(2)计算可以得到,其导数为,我们需要讨论的符号,故需再构建新函数,其导数为,结合原函数的形式和的形式,我们发现当恒成立;当时,上有极小值点 ,结合可知上有零点;当时,恒成立,结合可知,上也是恒成立的,故而上递增恒成立.i) 当 时,则   ,因此在 上恒有 ,即 上单调递减;ii)当时,,因而在上有,在上有  ;因此 上单调递减,在单调递增.(2)设 ,. 先证明一个命题:当时,.令,故上是减函数,从而当时,,故命题成立. ,由 可知,.,故 ,对任意都成立,故 上无零点,因此.ii)当,考察函数 ,由于 上必存在零点.设的第一个零点为,则当时,,故 上为减函数,又 所以当 时, ,从而 上单调递减,故在 上恒有 。即 ,注意到 ,因此,令时,则有,由零点存在定理可知函数 上有零点,符合题意.点睛:导数中函数的含参数的问题的讨论,需要考虑下面的几个方面:(1)把导函数充分变形,找出决定导数符号的核心代数式,讨论其零点是否存在,零点是否在给定的范围中;(2)零点不容易求得时,需要结合原函数的形式去讨论,有时甚至需要把原函数放缩去讨论,常见的放缩有等;(3)如果导数也比较复杂,可以进一步求导,讨论导函数的导数.16已知函数(1)若,求函数的单调区间;(2)当时,设,若有两个相异零点,求证:.【答案】(1) 当时,函数的单调增区间是,单调减区间是,当时,函数的单调增区间是,单调减区间是.(2)见解析.【解析】试题分析:1)由两种情况讨论即得解;(2,设的两个相异零点为,设因为所以相减得相加得.要证,即证,即,即换元设上式转化为.构造函数求导研究单调性即可得证.(2),设的两个相异零点为.要证,即证,即上式转化为.,∴,∴上单调递增,,∴,∴.点睛:本题考查了利用导数研究函数单调性,考查了分类讨论的思想,考查了不等式的证明,利用零点的式子进行变形,采用变量集中的方法构造新函数即可证明,综合性强属于中档题17设函数.(1)求函数的单调递减区间;(2)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.【答案】(1) 函数的单调递增区间为;(2)的取值范围是.试题解析:(1)函数的定义域为,则使的取值范围为故函数的单调递减区间为在区间内恰有两个相异实根,解得:综上所述,的取值范围是 

    相关试卷

    2023年新高考数学函数压轴小题专题突破 专题9 分段函数零点问题:

    这是一份2023年新高考数学函数压轴小题专题突破 专题9 分段函数零点问题,文件包含专题9分段函数零点问题解析版docx、专题9分段函数零点问题原卷版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。

    2022-2023年高考数学压轴题专项练习 专题2 破译函数中双变量的问题(试题+解析版):

    这是一份2022-2023年高考数学压轴题专项练习 专题2 破译函数中双变量的问题(试题+解析版),文件包含2022-2023年高考数学压轴题专项练习专题2破译函数中双变量的问题解析版doc、2022-2023年高考数学压轴题专项练习专题2破译函数中双变量的问题试题版doc等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    2022-2023年高考数学压轴题专项练习 专题4 解密三角函数之给值求值问题 (试题+解析版):

    这是一份2022-2023年高考数学压轴题专项练习 专题4 解密三角函数之给值求值问题 (试题+解析版),文件包含2022-2023年高考数学压轴题专项练习专题4解密三角函数之给值求值问题解析版doc、2022-2023年高考数学压轴题专项练习专题4解密三角函数之给值求值问题试题版doc等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map