|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年常德市重点中学中考数学仿真试卷含解析
    立即下载
    加入资料篮
    2021-2022学年常德市重点中学中考数学仿真试卷含解析01
    2021-2022学年常德市重点中学中考数学仿真试卷含解析02
    2021-2022学年常德市重点中学中考数学仿真试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年常德市重点中学中考数学仿真试卷含解析

    展开
    这是一份2021-2022学年常德市重点中学中考数学仿真试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知二次函数y=3(x﹣1)2+k的图象上有三点A(,y1),B(2,y2),C(﹣,y3),则y1、y2、y3的大小关系为(  )
    A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y1
    2.一个数和它的倒数相等,则这个数是( )
    A.1 B.0 C.±1 D.±1和0
    3.方程x2+2x﹣3=0的解是(  )
    A.x1=1,x2=3 B.x1=1,x2=﹣3
    C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3
    4.如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是(  )

    A. B.
    C. D.
    5.在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为(  )
    A. B. C. D.
    6.小亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是(  )

    A.小亮骑自行车的平均速度是12 km/h
    B.妈妈比小亮提前0.5 h到达姥姥家
    C.妈妈在距家12 km处追上小亮
    D.9:30妈妈追上小亮
    7.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于(  )
    A.4 B.6 C.16π D.8
    8.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是

    A. B. C. D.
    9.已知正多边形的一个外角为36°,则该正多边形的边数为( ).
    A.12 B.10 C.8 D.6
    10.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )

    A.点M B.点N C.点P D.点Q
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是 .
    12.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表所示:
    x

    ﹣5
    ﹣4
    ﹣3
    ﹣2
    ﹣1

    y

    ﹣8
    ﹣3
    0
    1
    0

    当y<﹣3时,x的取值范围是_____.
    13.已知二次函数中,函数y与x的部分对应值如下:

    ...
    -1
    0
    1
    2
    3
    ...

    ...
    10
    5
    2
    1
    2
    ...
    则当时,x的取值范围是_________.
    14.如图,⊙O在△ABC三边上截得的弦长相等,∠A=70°,则∠BOC=_____度.

    15.函数y=+中,自变量x的取值范围是_____.
    16.如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为_____.

    17.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用_____秒钟.

    三、解答题(共7小题,满分69分)
    18.(10分)先化简:()÷,再从﹣2,﹣1,0,1这四个数中选择一个合适的数代入求值.
    19.(5分)如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶.

    (1)由定义知,取AB中点N,连结MN,MN与AB的关系是_____.
    (2)抛物线y=对应的准蝶形必经过B(m,m),则m=_____,对应的碟宽AB是_____.
    (3)抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
    ①求抛物线的解析式;
    ②在此抛物线的对称轴上是否有这样的点P(xp,yp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.
    20.(8分)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF.

    求证:(1)AE=BF;(2)AE⊥BF.
    21.(10分) [阅读]我们定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“中边三角形”,把这条边和其边上的中线称为“对应边”.

    [理解]如图1,Rt△ABC是“中边三角形”,∠C=90°,AC和BD是“对应边”,求tanA的值;
    [探究]如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.当β=45°时,若△APQ是“中边三角形”,试求的值.
    22.(10分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.
    (1)求证:△ABE∽△ECM;
    (2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;
    (3)当线段AM最短时,求重叠部分的面积.

    23.(12分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;分别写出B、C两点的对应点B′、C′的坐标;如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.

    24.(14分)已知二次函数y=a(x+m)2的顶点坐标为(﹣1,0),且过点A(﹣2,﹣).
    (1)求这个二次函数的解析式;
    (2)点B(2,﹣2)在这个函数图象上吗?
    (3)你能通过左,右平移函数图象,使它过点B吗?若能,请写出平移方案.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    试题分析:根据二次函数的解析式y=3(x-1)2+k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3>y2>y1.
    故选D
    点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.
    2、C
    【解析】
    根据倒数的定义即可求解.
    【详解】
    的倒数等于它本身,故符合题意.
    故选:.
    【点睛】
    主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
    3、B
    【解析】
    本题可对方程进行因式分解,也可把选项中的数代入验证是否满足方程.
    【详解】
    x2+2x-3=0,
    即(x+3)(x-1)=0,
    ∴x1=1,x2=﹣3
    故选:B.
    【点睛】
    本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.
    4、B
    【解析】
    找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
    【详解】
    解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形.
    故选:B.
    【点睛】
    本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
    5、C
    【解析】
    列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可.
    解:

    共16种情况,和为6的情况数有3种,所以概率为.
    故选C.
    6、D
    【解析】
    根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.
    【详解】
    解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,
    ∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;
    B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),
    ∴妈妈比小亮提前0.5小时到达姥姥家,故正确;
    C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,
    ∴小亮走的路程为:1×12=12km,
    ∴妈妈在距家12km出追上小亮,故正确;
    D、由图象可知,当t=9时,妈妈追上小亮,故错误;
    故选D.
    【点睛】
    本题考查函数图像的应用,从图像中读取关键信息是解题的关键.
    7、A
    【解析】
    由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.
    【详解】
    解:由题意知:底面周长=8π,
    ∴底面半径=8π÷2π=1.
    故选A.
    【点睛】
    此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.
    8、D
    【解析】
    由圆锥的俯视图可快速得出答案.
    【详解】
    找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.
    【点睛】
    本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.
    9、B
    【解析】
    利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.
    【详解】
    解:360°÷36°=10,所以这个正多边形是正十边形.
    故选:B.
    【点睛】
    本题主要考查了多边形的外角和定理.是需要识记的内容.
    10、C
    【解析】
    试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.

    考点:有理数大小比较.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    ∵四边形ABCD为正方形,
    ∴∠D=∠ABC=90°,AD=AB,
    ∴∠ABE=∠D=90°,
    ∵∠EAF=90°,
    ∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,
    ∴∠DAF=∠BAE,
    ∴△AEB≌△AFD,
    ∴S△AEB=S△AFD,
    ∴它们都加上四边形ABCF的面积,
    可得到四边形AECF的面积=正方形的面积=1.
    12、x<﹣4或x>1
    【解析】
    观察表格求出抛物线的对称轴,确定开口方向,利用二次函数的对称性判断出x=1时,y=-3,然后写出y<-3时,x的取值范围即可.
    【详解】
    由表可知,二次函数的对称轴为直线x=-2,抛物线的开口向下,
    且x=1时,y=-3,
    所以,y<-3时,x的取值范围为x<-4或x>1.
    故答案为x<-4或x>1.
    【点睛】
    本题考查了二次函数的性质,二次函数图象上点的坐标特征,观察图表得到y=-3时的另一个x的值是解题的关键.
    13、0 【解析】
    根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.
    【详解】
    由表可知,二次函数的对称轴为直线x=2,
    所以,x=4时,y=5,
    所以,y<5时,x的取值范围为0 故答案为0 【点睛】
    此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握.
    14、125
    【解析】
    解:过O作OM⊥AB,ON⊥AC,OP⊥BC,垂足分别为M,N,P
    ∵∠A=70°,∠B+∠C=180∘−∠A=110°
    ∵O在△ABC三边上截得的弦长相等,
    ∴OM=ON=OP,
    ∴O是∠B,∠C平分线的交点
    ∴∠BOC=180°−12(∠B+∠C)=180°−12×110°=125°.

    故答案为:125°
    【点睛】
    本题考查了圆心角、弧、弦的关系, 三角形内角和定理, 角平分线的性质,解题的关键是掌握它们的性质和定理.
    15、x≥﹣2且x≠1
    【解析】
    分析:
    根据使分式和二次根式有意义的要求列出关于x的不等式组,解不等式组即可求得x的取值范围.
    详解:
    ∵有意义,
    ∴ ,解得:且.
    故答案为:且.
    点睛:本题解题的关键是需注意:要使函数有意义,的取值需同时满足两个条件:和,二者缺一不可.
    16、1或
    【解析】
    由四边形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG为等腰三角形时,①EF=GE=时,于是得到DE=DG=AD÷=1,②GE=GF时,根据勾股定理得到DE=.
    【详解】
    解:∵四边形ABCD是菱形,∠B=120°,
    ∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,
    ∵EF∥AB,
    ∴四边形ABFE是平行四边形,
    ∴EF∥AB,
    ∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,
    ∵DE=DG,
    ∴∠DEG=∠DGE=30°,
    ∴∠FEG=30°,
    当△EFG为等腰三角形时,
    当EF=EG时,EG=,
    如图1,

    过点D作DH⊥EG于H,
    ∴EH=EG=,
    在Rt△DEH中,DE==1,
    GE=GF时,如图2,

    过点G作GQ⊥EF,
    ∴EQ=EF=,在Rt△EQG中,∠QEG=30°,
    ∴EG=1,
    过点D作DP⊥EG于P,
    ∴PE=EG=,
    同①的方法得,DE=,
    当EF=FG时,由∠EFG=180°-2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,
    故答案为1或.
    【点睛】
    本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.
    17、2.5秒.
    【解析】
    把此正方体的点A所在的面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于5,另一条直角边长等于2,利用勾股定理可求得.
    【详解】
    解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.
    (1)展开前面右面由勾股定理得AB=cm;
    (2)展开底面右面由勾股定理得AB==5cm;
    所以最短路径长为5cm,用时最少:5÷2=2.5秒.
    【点睛】
    本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.

    三、解答题(共7小题,满分69分)
    18、,1.
    【解析】
    先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可.
    【详解】
    原式=•
    =•
    =.
    ∵由题意,x不能取1,﹣1,﹣2,∴x取2.
    当x=2时,原式===1.
    【点睛】
    本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解答此题的关键.
    19、(1)MN与AB的关系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.
    【解析】
    (1)直接利用等腰直角三角形的性质分析得出答案;
    (2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;
    (2)①根据题意得出抛物线必过(2,0),进而代入求出答案;
    ②根据y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,进而得出答案.
    【详解】
    (1)MN与AB的关系是:MN⊥AB,MN=AB,
    如图1,∵△AMB是等腰直角三角形,且N为AB的中点,
    ∴MN⊥AB,MN=AB,
    故答案为MN⊥AB,MN=AB;

    (2)∵抛物线y=对应的准蝶形必经过B(m,m),
    ∴m=m2,
    解得:m=2或m=0(不合题意舍去),
    当m=2则,2=x2,
    解得:x=±2,
    则AB=2+2=4;
    故答案为2,4;
    (2)①由已知,抛物线对称轴为:y轴,
    ∵抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
    ∴抛物线必过(2,0),代入y=ax2﹣4a﹣(a>0),
    得,9a﹣4a﹣=0,
    解得:a=,
    ∴抛物线的解析式是:y=x2﹣2;
    ②由①知,如图2,y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,
    ∴在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.

    【点睛】
    此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.
    20、见解析
    【解析】
    (1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,所以相等,由此可以证明△AEO≌△BFO;
    (2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF
    【详解】
    解:(1)证明:在△AEO与△BFO中,
    ∵Rt△OAB与Rt△EOF等腰直角三角形,
    ∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,
    ∴△AEO≌△BFO,
    ∴AE=BF;
    ( 2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO

    由(1)知:∠OAC=∠OBF,
    ∴∠BDA=∠AOB=90°,
    ∴AE⊥BF.
    21、tanA=;综上所述,当β=45°时,若△APQ是“中边三角形”,的值为或.
    【解析】
    (1)由AC和BD是“对应边”,可得AC=BD,设AC=2x,则CD=x,BD=2x,可得∴BC=x,可得tanA===
    (2) 当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,可得AC是QP的垂直平分线.可求得△AEF∽△CEP,=,分两种情况:
    当底边PQ与它的中线AE相等,即AE=PQ时,
    ==,
    ∴=;
    当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,
    (3)作QN⊥AP于N,可得tan∠APQ===,
    tan∠APE===,
    ∴=,
    【详解】
    解:[理解]∵AC和BD是“对应边”,
    ∴AC=BD,
    设AC=2x,则CD=x,BD=2x,
    ∵∠C=90°,
    ∴BC===x,
    ∴tanA===;
    [探究]若β=45°,当点P在AB上时,△APQ是等腰直角三角形,不可能是“中边三角形”,
    如图2,当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,
    ∵PC=QC,∠ACB=∠ACD,
    ∴AC是QP的垂直平分线,
    ∴AP=AQ,
    ∵∠CAB=∠ACP,∠AEF=∠CEP,
    ∴△AEF∽△CEP,
    ∴===,
    ∵PE=CE,
    ∴=,
    分两种情况:
    当底边PQ与它的中线AE相等,即AE=PQ时,
    ==,
    ∴=;
    当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,
    如图3,作QN⊥AP于N,
    ∴MN=AN=PM=QM,
    ∴QN=MN,
    ∴ntan∠APQ===,
    ∴ta∠APE===,
    ∴=,
    综上所述,当β=45°时,若△APQ是“中边三角形”,的值为或.

    【点睛】本题是一道相 似形综合运用的试题, 考查了相 似三角形的判定及性质的运用, 勾股定理的运用, 等腰直角三角形的性质的运用, 等腰三角形的性质的运用, 锐角三角形函数值的运用, 解答时灵活运用三角函数值建立方程求解是解答的关键.
    22、(1)证明见解析;(2)能;BE=1或;(3)
    【解析】
    (1)证明:∵AB=AC,
    ∴∠B=∠C,
    ∵△ABC≌△DEF,
    ∴∠AEF=∠B,
    又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,
    ∴∠CEM=∠BAE,
    ∴△ABE∽△ECM;
    (2)能.
    ∵∠AEF=∠B=∠C,且∠AME>∠C,
    ∴∠AME>∠AEF,
    ∴AE≠AM;
    当AE=EM时,则△ABE≌△ECM,
    ∴CE=AB=5,
    ∴BE=BC−EC=6−5=1,
    当AM=EM时,则∠MAE=∠MEA,
    ∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,
    又∵∠C=∠C,
    ∴△CAE∽△CBA,
    ∴,
    ∴CE=,
    ∴BE=6−=;
    ∴BE=1或;
    (3)解:设BE=x,
    又∵△ABE∽△ECM,
    ∴,即:,
    ∴CM=,
    ∴AM=5−CM,
    ∴当x=3时,AM最短为,
    又∵当BE=x=3=BC时,
    ∴点E为BC的中点,
    ∴AE⊥BC,
    ∴AE=,
    此时,EF⊥AC,
    ∴EM=,
    S△AEM=.
    23、 (1)画图见解析(2)B'(-6,2)、C'(-4,-2)(3) M'(-2x,-2y)
    【解析】
    解:(1)
    (2)以0点为位似中心在y轴的左侧将△OBC放大到两倍,则是对应点的坐标放大两倍,并将符号进行相应的改变,因为B(3,-1),则B’(-6,2) C(2,1),则C‘(-4,-2)
    (3)因为点M (x,y)在△OBC内部,则它的对应点M′的坐标是M的坐标乘以2,并改变符号,即M’(-2x,-2y)
    24、(1)y=﹣(x+1)1;(1)点B(1,﹣1)不在这个函数的图象上;(3)抛物线向左平移1个单位或平移5个单位函数,即可过点B;
    【解析】
    (1)根据待定系数法即可得出二次函数的解析式;
    (1)代入B(1,-1)即可判断;
    (3)根据题意设平移后的解析式为y=-(x+1+m)1,代入B的坐标,求得m的植即可.
    【详解】
    解:(1)∵二次函数y=a(x+m)1的顶点坐标为(﹣1,0),
    ∴m=1,
    ∴二次函数y=a(x+1)1,
    把点A(﹣1,﹣)代入得a=﹣,
    则抛物线的解析式为:y=﹣(x+1)1.
    (1)把x=1代入y=﹣(x+1)1得y=﹣≠﹣1,
    所以,点B(1,﹣1)不在这个函数的图象上;
    (3)根据题意设平移后的解析式为y=﹣(x+1+m)1,
    把B(1,﹣1)代入得﹣1=﹣(1+1+m)1,
    解得m=﹣1或﹣5,
    所以抛物线向左平移1个单位或平移5个单位函数,即可过点B.
    【点睛】
    本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的性质以及图象与几何变换.

    相关试卷

    永州市重点中学2021-2022学年中考数学仿真试卷含解析: 这是一份永州市重点中学2021-2022学年中考数学仿真试卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,下列各式正确的是等内容,欢迎下载使用。

    湖南省常德市澧县重点达标名校2021-2022学年中考数学仿真试卷含解析: 这是一份湖南省常德市澧县重点达标名校2021-2022学年中考数学仿真试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,计算的结果是,运用乘法公式计算等内容,欢迎下载使用。

    湖南省常德市鼎城区2021-2022学年中考数学仿真试卷含解析: 这是一份湖南省常德市鼎城区2021-2022学年中考数学仿真试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,已知一次函数y=,计算3÷2的结果是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map