所属成套资源:备战2022年新高考数学必考点提分精练(新高考地区专用)
专题17 圆锥曲线中的存在性问题-备战2022年新高考数学必考点提分精练(新高考地区专用)
展开
这是一份专题17 圆锥曲线中的存在性问题-备战2022年新高考数学必考点提分精练(新高考地区专用),文件包含专题17圆锥曲线中的存在性问题解析版docx、专题17圆锥曲线中的存在性问题原卷版docx等2份试卷配套教学资源,其中试卷共122页, 欢迎下载使用。
专题17 圆锥曲线中的存在性问题
一、解答题
1.已知在平面直角坐标系中,直线过点,且与抛物线:交于,两点.
(1)求证:;
(2)在轴上是否存在定点,无论直线的斜率为何值,向量与始终共线?若存在,求出点的坐标;若不存在,请说明理由.
2.在平面直角坐标系中,为坐标原点,动点到两点的距离之和为4.
(1)试判断动点的轨迹是什么曲线,并求其轨迹方程;
(2)已知直线与圆交于、两点,与曲线交于、两点,其中、在第一象限.为原点到直线的距离,是否存在实数,使得取得最大值,若存在,求出;不存在,说明理由.
3.设椭圆的离心率,焦距为4.
(1)求椭圆的标准方程;
(2)过椭圆右焦点的动直线交椭圆于两点,为直线上的一点,是否存在直线与点P,使得恰好为等边三角形,若存在求出的面积,若不存在说明理由.
4.已知点,,动点满足直线和的斜率之积为,记的轨迹为曲线.
(1)求曲线的方程;
(2)问在第一象限内曲线上是否存在点使得,若存在,求出点的坐标,若不存在,请说明理由.
5.已知直线经过椭圆()左顶点和上顶点.
(1)求椭圆的方程;
(2)若,为椭圆上除上下顶点之外的关于原点对称的两个点,已知直线上存在一点,使得三角形为正三角形,求所在直线的方程.
6.已知椭圆的长轴长是焦距的两倍,其左、右焦点依次为、,抛物线:的准线与轴交于,椭圆与抛物线的一个交点为.
(1)当时,求椭圆的方程;
(2)在(1)的条件下,直线过焦点,与抛物线交于、两点,若弦长等于的周长,求直线的方程;
(3)由抛物线弧和椭圆弧合成的曲线叫做“抛椭圆”,是否存在以原点为直角顶点,另两个顶点、落在“抛椭圆”上的等腰直角三角形,若存在,求出两直角边所在直线的斜率;若不存在,说明理由.
7.已知点,,的周长等于,点满足.
(1)求点的轨迹的方程;
(2)是否存在过原点的直线与曲线交于,两点,与圆交于,两点(其中点在线段上),且,若存在,求出直线的方程;若不存在,请说明理由.
8.已知椭圆的两个焦点与短轴的一个端点连线构成等边三角形,且椭圆C的短轴长为.
(1)求椭圆C的标准方程;
(2)是否存在过点的直线l与椭圆C相交于不同的两点M,N,且满足(O为坐标原点)若存在,求出直线l的方程;若不存在,请说明理由.
9.如图,曲线由上半椭圆和部分抛物线连接而成,与的公共点为,,其中的离心率为.
(1)求,的值.
(2)过点的直线与,分别交于点,(均异于点,),是否存在直线,使得以为直径的圆恰好过点?若存在,求出直线的方程;若不存在,请说明理由.
10.已知抛物线的顶点在坐标原点,焦点在轴的正半轴上,直线与抛物线交于,两点,且.
(1)求抛物线的标准方程.
(2)在轴上是否存在一点,使为正三角形?若存在,求出点的坐标;若不存在,请说明理由.
11.已知椭圆的离心率为,且其左顶点到右焦点的距离为.
(1)求椭圆的方程;
(2)设点、在椭圆上,以线段为直径的圆过原点,试问是否存在定点,使得到直线的距离为定值?若存在,请求出点坐标;若不存在,请说理由.
12.已知椭圆:()过点,且焦距与长轴之比为.设,为椭圆的左、右顶点,为椭圆上异于,的一点,直线,分别与直线:相交于,两点,且直线与椭圆交于另一点.
(1)求椭圆的标准方程;
(2)求证:直线与的斜率之积为定值;
(3)判断三点,,是否共线,并证明你的结论.
13.已知双曲线:,,,,,五点中恰有三点在上.
(1)求的方程;
(2)设是上位于第一象限内的一动点,则是否存在定点,使得,若存在,求出点的坐标;若不存在,请说明理由.
14.已知抛物线.
(1)过抛物线焦点的直线交抛物线于两点,求的值(其中为坐标原点);
(2)过抛物线上一点,分别作两条直线交抛物线于另外两点、,交直线于两点,求证:为常数
(3)已知点,在抛物线上是否存在异于点的两个不同点,使得若存在,求点纵坐标的取值范围,若不存在,请说明理由.
15.在平面直角坐标系中,已知椭圆:的左、右顶点分别为A、B,右焦点为F,且椭圆过点、,过点F的直线l与椭圆交于P、Q两点(点P在x轴的上方).
(1)求椭圆的标准方程;
(2)若,求点P的坐标;
(3)设直线AP、BQ的斜率分别为、,是否存在常数,使得?若存在,请求出的值;若不存在,请说明理由.
16.
(1)求双曲线的方程;
(2)若对任意的,直线与双曲线总有公共点,求实数的取值范围;
(3)若过点的直线与双曲线交于两点,问在轴上是否存在定点,使得为常数?若存在,求出点的坐标及此常数的值,若不存在,请说明理由.
17.已知椭圆的离心率为,左、右焦点分别为,O为坐标原点,点P在椭圆C上,且满足.
(1)求椭圆C的方程;
(2)已知过点且不与坐标轴垂直的直线l与椭圆C交于M,N两点,在x轴上是否存在定点Q,使得,若存在,求出点Q的坐标;若不存在,说明理由.
18.已知抛物线的准线为,直线交于,两点,过点,分别作上的垂线,垂足分别为,.
(1)若梯形的面积为,求实数的值;
(2)是否存在常数,使得成立?若存在,求出的值,若不存在,请说明理由?
19.已知椭圆的短轴长是2,且离心率为.
(1)求椭圆E的方程;
(2)已知,若直线与椭圆E相交于A,B两点,线段AB的中点为M,是否存在常数,使恒成立,并说明理由.
20.如图,从椭圆上一点向轴作垂线,垂足恰为左焦点.又点 是椭圆与轴正半轴的交点,点是椭圆与轴正半轴的交点,且,.
(1)求椭圆的方程;
(2)直线交椭圆于、两点,判断是否存在直线,使点恰为的重心?若存在,求出直线的方程;若不存在,请说明理由.
21.已知椭圆的离心率为,圆与轴相切,为坐标原点.
(1)求椭圆的方程;
(2)设椭圆的右焦点为,过点的直线交椭圆于两点,是否存在直线使的面积为?若存在,求出直线的方程;若不存在,请说明理由.
22.如图所示,在圆锥内放入两个大小不同的球,,使得它们分别与圆锥的侧面和平面α相切,两个球分别与平面α相切于点,,丹德林()利用这个模型证明了平面x与圆锥侧面的交线为椭圆,,为此椭圆的两个焦点,这两个球也称为Dandelin双球.若平面α截圆锥得的是焦点在x轴上,且离心率为的椭圆,圆锥的顶点V到椭圆顶点的距离为,圆锥的母线与椭圆的长轴垂直,圆锥的母线与它的轴的夹角为.
(1)求椭圆的标准方程;
(2)设点Q的坐标为(,0),过右焦点的直线与椭圆交于A,B两点,直线BQ与直线交于点E,试问直线EA是否垂直于直线l?若是,写出证明过程;若不是,请说明理由.
23.已知点F为抛物线E:的焦点,为E上一点,且.
(1)求抛物线E的方程.
(2)过E上动点A作圆N:的两条切线,分别交E于B,C(不同于点A)两点,是否存在实数t,使得直线BC与圆N相切.若存在,求出实数t的值,不存在,请说明理由.
24.已知椭圆的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆的标准方程;
(2)设为椭圆的左焦点,为直线上任意一点,过作的垂线交椭圆于点和.试判断是否平分线段(其中为坐标原点),并求当取最小值时点的坐标.
25.如图,椭圆:内切于矩形,其中,与轴平行,直线,的斜率之积为,椭圆的焦距为2.
(1)求椭圆的标准方程;
(2)椭圆上的点,满足直线,的斜率之积为,其中为坐标原点.若为线段的中点,则是否为定值?如果是,求出该定值;如果不是,说明理由.
26.已知过点的动直线与抛物线交于点,抛物线的焦点为,当点横坐标为时,.
(1)求抛物线的方程;
(2)当直线变动时,轴上是否存在点,使得点到直线的距离相等,若存在,求出点坐标;若不存在,说明理由.
27.已知椭圆的两个焦点分别为,,过点且与轴垂直的直线交椭圆于,两点,的面积为,椭圆的离心率为.
(1)求椭圆的标准方程;
(2)已知为坐标原点,直线与轴交于点,与椭圆交于,两个不同的点,若存在实数,使得,求的取值范围.
28.已知双曲线的左顶点为,右焦点为F,点B在C上.当时.不垂直于x轴的直线与双曲线同一支交于P,Q两点.
(1)求双曲线C的标准方程;
(2)直线PQ过点F,在x轴上是否存在点N,使得x轴平分?若存在,求出点的N的坐标;若不存在,说明理由.
29.在平面直角坐标系中,已知椭圆的左、右顶点分別为A、B,右焦点F,且椭圆过点、,过点F的直线l与椭圆交于P、Q两点(点P在x轴的上方).
(1)求椭圆的标准方程;
(2)设直线AP、BQ的斜率分別为、,是否存在常数,使得?若存在,请求出的值;若不存在,请说明理由.
30.已知椭圆离心率为,点在椭圆上.
(1)求椭圆的方程;
(2)设为坐标原点,,,是椭圆上不同的三点,且为的重心,探究面积是否为定值,若是求出这个定值;若不是,说明理由
31.已知椭圆的离心率,点A,B,N分别为椭圆的左右顶点和上顶点,且.
(1)求椭圆的方程;
(2)设不过原点直线与椭圆交于不同的,两点,且直线的斜率依次成等比数列.椭圆上是否存在一点,使得以为邻边的平行四边形的面积为定值?若存在,求出该定值;若不存在,请说明理由.
32.已知椭圆的上顶点为M、右顶点为N.(点O为坐标原点)的面积为1,直线被椭圆C所截得的线段长度为.
(1)椭圆C的标准方程;
(2)试判断椭圆C内是否存在圆,使得圆O的任意一条切线与椭圆C交于A,B两点时,满足为定值?若存在,求出圆O的方程;若不存在,请说明理由.
33.在平面直角坐标系中,已知椭圆:的焦距为4,且过点.
(1)求椭圆的方程;
(2)设椭圆的上顶点为,右焦点为,直线与椭圆交于两点,问是否存在直线,使得为的垂心,若存在,求出直线的方程;若不存在,请说明理由.
34.在平面直角坐标系中,已知椭圆:的上、下顶点分别为,,左焦点为F,左顶点为A,椭圆过点,且.
(1)求椭圆C的标准方程;
(2)过左焦点F且斜率为的动直线l与椭圆C交于P、Q两点,试问在x轴上是否存在一个定点M,使得x轴为的平分线?若存在,求出点M的坐标;若不存在,请说明理由.
35.定义:平面内两个分别以原点和两坐标轴为对称中心和对称轴的椭圆,它们的长、短半轴长分别为和,若满足,则称为的级相似椭圆.已知椭圆为的2级相似椭圆,且焦点共轴,与的离心率之比为.
(1)求的方程.
(2)已知为上任意一点,过点作的两条切线,切点分别为.
①证明:在处的切线方程为.
②是否存在一定点到直线的距离为定值?若存在,求出该定点和定值;若不存在,说明理由.
36.已知椭圆的离心率为,左、右焦点分别为,为坐标原点,点在椭圆上,且满足,.
(1)求椭圆的方程;
(2)已知过点且不与轴重合的直线与椭圆交于两点,在轴上是否存在定点,使得. 若存在,求出点的坐标;若不存在,说明理由.
37.已知椭圆,过的直线与椭圆交于两点,过的直线与椭圆交于两点.
(1)当的斜率是时,用表示出的值;
(2)若直线的倾斜角互补,是否存在实数,使为定值,若存在,求出该定值及,若不存在,说明理由.
38.已知椭圆的左、右焦点分别为、,P为椭圆上的一点,的周长为6,过焦点的弦中最短的弦长为3;椭圆的右焦点为抛物线的焦点.
(1)求椭圆与抛物线的方程;
(2)过椭圆的右顶点Q的直线l交抛物线于A、B两点,点O为原点,射线、分别交椭圆于C、D两点,的面积为,以A、C、D、B为顶点的四边形的面积为,问是否存在直线l使得?若存在,求出直线/的方程;若不存在,请说明理由.
39.已知椭圆的左、右焦点分别为,,过点的直线交椭圆于,两点,交轴于点.
(1)若直线的倾斜角为时,求的值;
(2)若点在第一象限,满足,求的值;
(3)在轴上是否存在定点,使得是一个确定的常数?若存在,求出点的坐标;若不存在,说明理由.
40.如图,椭圆的左、右焦点分别为、,过右焦点与x轴垂直的直线交椭圆于M、N两点,动点P、Q分别在直线MN与椭圆C上.已知,的周长为.
(1)求椭圆C的方程;
(2)若线段PQ的中点在y轴上,求三角形的面积;
(3)是否存在以、为邻边的矩形,使得点E在椭圆C上?若存在,求出所有满足条件的点Q的横坐标;若不存在,说明理由.
41.设椭圆过,两点,为坐标原点.
(1)求椭圆的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,,且?若存在,写出该圆的方程,并求的取值范围;若不存在,说明理由.
42.已知,分别是双曲线C:(,)的左、右焦点,,P是C上一点,,且.
(1)求双曲线C的标准方程;
(2)经过点的直线l与双曲线C交于A,B两点,过点A作直线的垂线,垂足为D,过点O作(O为坐标原点),垂足为M.则在x轴上是否存在定点N,使得为定值?若存在,求出点N的坐标;若不存在,请说明理由.
43.已知抛物线,直线交于、两点,且当时,.
(1)求的值;
(2)如图,抛物线在、两点处的切线分别与轴交于、,和交于,.证明:存在实数,使得.
44.设双曲线,点,为双曲线的左、右顶点,点为双曲线上异于顶点的一点,设直线,的斜率分别为,.
(1)证明:;
(2)若过点作不与轴重合的直线与双曲线交于不同两点,,设直线,的斜率分别为,.是否存在常数使?若存在,求出的值,若不存在,请说明理由.
45.已知椭圆的左、右焦点分别为、,点在椭圆上,且满足.
(1)求椭圆的方程;
(2)设为坐标原点,过点且斜率不为零的直线交椭圆于不同的两点、,则在轴上是否存在定点,使得平分?若存在,求出点坐标;若不存在,请说明理由.
46.已知椭圆的左右焦点分别是,,右顶点和上顶点分别为,,的面积为.
(1)求椭圆的标准方程;
(2)以此椭圆的上顶点为直角顶点作椭圆的内接等腰直角,这样的直角三角形是否存在?若存在,请说明有几个;若不存在,请说明理由.
47.已知动圆过点(0,1),且与直线:相切.
(1)求动圆圆心的轨迹的方程;
(2)点一动点,过作曲线E两条切线,,切点分别为,,且,直线与圆相交于,两点,设点到直线距离为.是否存在点,使得?若存在,求出点坐标;若不存在,请说明理由.
48.如图,已知椭圆和抛物线,斜率为正的直线与轴及椭圆依次交于、、三点,且线段的中点在抛物线上.
(1)求点的纵坐标的取值范围;
(2)设是抛物线上一点,且位于椭圆的左上方,求点的横坐标的取值范围,使得的面积存在最大值.
49.已知椭圆C:经过点,直线与椭圆C交于点M,N,且直线AM,AN斜率之积为.
(1)求椭圆C的方程;
(2)若过椭圆C右焦点F的动直线l与椭圆C交于点P,Q(与左右顶点不重合),判断x轴上是否存在点E,使得直线EP,EQ关于x轴对称,若存在,求出点E坐标,若不存在,说明理由,
50.已知椭圆C:的离心率为,直线与椭圆仅有一个公共点.
(1)求椭圆C的方程;
(2)若直线l:,试问在x轴上是否存在一定点M,使得过M的直线交椭圆于P,Q两点,交l于N,且满足,若存在,求出点M的坐标;若不存在,请说明理由.
51.已知椭圆的离心率为,点在圆C上.
(1)求椭圆C的方程;
(2)过椭圆C内一点的直线l的斜率为k,且与椭圆C交于M,N两点,设直线(O为坐标原点)的斜率分别为,若对任意k,存在实数,使得,求实数的取值范围.
52.已知椭圆的离心率,长轴的左、右端点分别为
(1)求椭圆的方程;
(2)设直线 与椭圆交于两点,直线与交于点,试问:当变化时,点是否恒在一条直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.
53.已知椭圆的焦点在轴上,右焦点为,且经过点且与x轴垂直的直线交椭圆于点,左顶点为.
(1)求椭圆的离心率和的面积;
(2)已知直线与椭圆交于,两点,过点作直线的垂线,垂足为,判断直线是否过定点?若是,求出该定点:若不是,请说明理由.
54.在平面直角坐标系中,已知,,.动点与,的距离的和等于18,动点满足.动点的轨迹与轴交于,两点,的横坐标小于的横坐标,是动点的轨迹上异于,的动点,直线与直线交于点,设直线的斜率为,的中点为,点关于直线的对称点为.
(1)求动点的轨迹方程;
(2)是否存在,使的纵坐标为0?若存在,求出使的纵坐标为0的所有的值;若不存在,请说明理由.
55.已知椭圆的中心在原点,焦点在轴上,椭圆的离心率等于,抛物线的准线经过椭圆的一个焦点.椭圆与轴交于,两点,的横坐标小于的横坐标,是椭圆上异于,的动点,直线与直线交于点,设直线的斜率为,的中点为,点关于直线的对称点为.
(1)求椭圆的方程;
(2)是否存在,使的纵坐标为0?若存在,求出使的纵坐标为0的所有的值;若不存在,请说明理由.
56.已知双曲线:过点,且的渐近线方程为.
(1)求的方程;
(2)如图,过原点O作互相垂直的直线,分别交双曲线于A,B两点和C,D两点,A,D在x轴同侧.请从①②两个问题中任选一个作答,如果多选,则按所选的第一个计分.
①求四边形ACBD面积的取值范围;
②设直线AD与两渐近线分别交于M,N两点,是否存在直线AD使M,N为线段AD的三等分点,若存在,求出直线AD的方程;若不存在,请说明理由.
57.已知椭圆的左右焦点分别为,,为的上顶点,且.
(1)求的方程;
(2)过坐标原点作两直线,分别交于,和,两点,直线,的斜率分别为,.是否存在常数,使时,四边形的面积为定值?如果存在,求出的值;如果不存在,说明理由.
58.在平面直角坐标系内,已知抛物线的焦点为,为平面直角坐标系内的点,若抛物线上存在点,使得,则称为的一个“垂足点”.
(1)若点有两个“垂足点”为和,求点的坐标;
(2)是否存在点,使得点有且仅有三个不同的“垂足点”,且点也是双曲线上的点?若存在,求出点的坐标;若不存在,说明理由.
59.已知椭圆的左右顶点分别为A,B,点P为椭圆上异于A,B的任意一点.
(1)证明:直线PA与直线PB的斜率乘积为定值;
(2)设,过点Q作与轴不重合的任意直线交椭圆E于M,N两点.问:是否存在实数,使得以MN为直径的圆恒过定点A?若存在,求出的值;若不存在,请说明理由.
60.已知抛物线的焦点为F,过点F的直线l交抛物线C于A,B两点,当轴时,.
(1)求抛物线C的方程;
(2)若直线l交y轴于点D,过点D且垂直于y轴的直线交抛物线C于点P,直线PF交抛物线C于另一点Q.
①是否存在定点M,使得四边形AQBM为平行四边形?若存在,求出定点M的坐标;若不存在,请说明理由.
②求证:为定值.
61.设椭圆过点,两点,O为坐标原点.
(1)求椭圆E的标准方程;
(2)是否存在圆心为原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求的取值范围,若不存在,请说明理由.
62.在平面直角坐标系中,,,,,点P是平面内的动点.若以为直径的圆O与以为直径的圆T内切.
(1)证明:为定值,并求点P的轨迹E的方程;
(2)设斜率为的直线l与曲线E相交于C、D两点,问在E上是否存在一点Q,使直线、与y轴所围成的三角形是底边在y轴上的等腰三角形?若存在,求出点Q的横坐标;若不存在,说明理由.
63.已知点,在抛物线上,,分别为过点A,B且与抛物线E相切的直线,,相交于点.
条件①:点M在抛物线E的准线上;
条件②:;
条件③:直线AB经过抛物线的焦点F.
(1)在上述三个条件中任选一个作为已知条件,另外两个作为结论,构成命题,并证明该命题成立;
(2)若,直线与抛物线E交于C、D两点,试问:在x轴正半轴上是否存在一点N,使得的外心在抛物线E上?若存在,求N的坐标;若不存在,请说明理由
64.已知椭圆:()的离心率为,点在椭圆上.
(1)求椭圆的方程;
(2)设是椭圆上第一象限内的点,直线过点且与椭圆有且仅有一个公共点.
①求直线的方程(用,)表示;
②设为坐标原点,直线分别与轴,轴相交于点,,试探究的面积是否存在最小值.若存在,求出最小值及相应的点的坐标;若不存在,请说明理由.
65.已知椭圆,若下列四点_________中恰有三点在椭圆C上.
①;②.
(1)从①②中任选一个条件补充在上面的问题中,并求出椭圆C的标准方程;
(2)在(1)的条件下,设直线l不经过点且与椭圆C相交于A,B两点,直线与直线的斜率之和为1,过坐标原点O作,垂足为D(若直线l过原点O,则垂足D视作与原点O重合),证明:存在定点Q,使得为定值.
相关试卷
这是一份专题20 导数的压轴小题-备战2022年新高考数学必考点提分精练(新高考地区专用),文件包含专题20导数的压轴小题解析版docx、专题20导数的压轴小题原卷版docx等2份试卷配套教学资源,其中试卷共90页, 欢迎下载使用。
这是一份专题18 圆锥曲线中的求范围及最值问题-备战2022年新高考数学必考点提分精练(新高考地区专用),文件包含专题18圆锥曲线中的求范围及最值问题解析版docx、专题18圆锥曲线中的求范围及最值问题原卷版docx等2份试卷配套教学资源,其中试卷共137页, 欢迎下载使用。
这是一份专题16 圆锥曲线中的定值、定点问题-备战2022年新高考数学必考点提分精练(新高考地区专用),文件包含专题16圆锥曲线中的定值定点问题解析版docx、专题16圆锥曲线中的定值定点问题原卷版docx等2份试卷配套教学资源,其中试卷共161页, 欢迎下载使用。