高中数学人教B版 (2019)必修 第一册3.4 数学建模活动:决定苹果的最佳出售时间点授课ppt课件
展开1.会利用所学知识,解决一次函数型、二次函数型及分段函数型的实际问题.2.掌握求解函数应用题的基本步骤,培养学生的数学应用意识.
知识点 函数模型(1)一次函数模型解析式:________.(2)二次函数模型①一般式:__________.②顶点式:_____________,其中顶点坐标为________.(3)分段函数模型有些实际问题,在事物的某个阶段对应的变化规律不尽相同,此时我们可以选择利用分段函数模型来刻画它,由于分段函数在不同的区间中具有不同的解析式,因此分段函数在研究条件变化的实际问题中,或者在某一特定条件下的实际问题中具有广泛的应用.
y=a(x-h)2+k
状元随笔 (1)在函数建模中,通常需要先画出函数图像,根据图像来确定两个变量的关系,选择函数类型.(2)函数模型在实际应用中,函数的自变量x往往具有实际意义,如x表示长度时,x≥0;x表示件数时,x≥0,且x∈Z等.在解答时,必须要考虑这些实际意义.
基础自测1.一个等腰三角形的周长是20,则底边长y是关于腰长x的函数,其解析式为( )A.y=20-2x(x≤10) B.y=20-2x(x<10)C.y=20-2x(5≤x≤10) D.y=20-2x(5<x<10)
2.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知该商品每个涨价1元时,其销售量就会减少20个,为了获得最大的利润,其售价应定为( )A.110元/个 B.105元/个C.100元/个 D.95元/个
解析:设每个商品涨价x元,利润为y元,则销售量为(400-20x)个,根据题意,有y=(10+x)(400-20x)=-20x2+200x+4 000=-20(x-5)2+4 500.所以当x=5时,y取得最大值,且为4 500,即当每个涨价5元,也就是售价为95元/个时,可以获得最大利润为4 500元.
3.某生产厂家的生产总成本y(万元)与产量x(件)之间的关系式为y=x2-80x,若每件产品的售价为25万元,则该厂获得最大利润时,生产的产品件数为( )A.52 B.52.5C.53 D.52或53
4.某游乐场每天的盈利额y(单位:元)与售出的门票数x(单位:张)之间的函数关系如图所示,试分析图像,要使该游乐场每天的盈利额超过1 000元,那么每天至少应售出________张门票.
题型1 一次函数模型的应用[经典例题]例1 (1)某厂日生产文具盒的总成本y(元)与日产量x(套)之间的关系为y=6x+30 000.而出厂价格为每套12元,要使该厂不亏本,至少日生产文具盒( )A.2 000套 B.3 000套C.4 000套 D.5 000套(2)商店出售茶壶和茶杯,茶壶定价为每个20元,茶杯每个5元,该商店推出两种优惠办法:①买一个茶壶赠一个茶杯;②按总价的92%付款.某顾客需要购买茶壶4个,茶杯若干个(不少于4个),若购买茶杯x(个),付款y(元),分别建立两种优惠办法中y与x之间的函数解析式,并讨论该顾客买同样多的茶杯时,两种办法哪一种更优惠?
【答案】 (1)D (2)见解析
【解析】 (1)因利润z=12x-(6x+30 000),所以z=6x-30 000,由z≥0解得x≥5 000,故至少日生产文具盒5 000套.(2)由优惠办法①可得函数解析式为y1=20×4+5(x-4)=5x+60(x≥4,且x∈N).由优惠办法②可得y2=(5x+20×4)×92%=4.6x+73.6(x≥4,且x∈N).y1-y2=0.4x-13.6(x≥4,且x∈N),令y1-y2=0,得x=34.所以,当购买34个茶杯时,两种办法付款相同;当4≤x<34时,y1
方法归纳(1)一次函数模型的实际应用:一次函数模型应用时,本着“问什么,设什么,列什么”这一原则.(2)一次函数的最值求解:一次函数求最值,常转化为求解不等式ax+b≥0(或≤0),解答时,注意系数a的正负,也可以结合函数图像或其单调性来求最值.
跟踪训练1 若一根蜡烛长20 cm,点燃后每小时燃烧5 cm,则燃烧剩下的高度h(cm)与燃烧时间t(h)的函数关系用图像表示为图中的( )
解析:蜡烛剩下的长度随时间增加而缩短,根据实际意义不可能是D项,更不可能是A、C两项.故选B项.
题型2 二次函数模型的应用[经典例题]例2 某水果批发商销售每箱进价为40元的苹果,假设每箱售价不得低于50元且不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天的销售量y(箱)与销售单价x(元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w(元)与销售单价x(元/箱)之间的函数关系式;(3)当每箱苹果的售价为多少元时,可以获得最大利润?最大利润是多少?
【解析】 (1)根据题意,得y=90-3(x-50),化简,得y=-3x+240(50≤x≤55,x∈N).(2)因为该批发商平均每天的销售利润=平均每天的销售量×每箱销售利润.所以w=(x-40)(-3x+240)=-3x2+360x-9 600(50≤x≤55,x∈N).(3)因为w=-3x2+360x-9 600=-3(x-60)2+1 200,所以当x<60时,w随x的增大而增大.又50≤x≤55,x∈N,所以当x=55时,w有最大值,最大值为1 125.所以当每箱苹果的售价为55元时,可以获得最大利润,且最大利润为1 125元.
状元随笔 本题中平均每天的销售量y(箱)与销售单价x(元/箱)是一个一次函数关系,虽然x∈[50,55],x∈N,但仍可把问题看成一次函数模型的应用问题;平均每天的销售利润w(元)与销售单价x(元/箱)是一个二次函数关系,可看成是一个二次函数模型的应用题.
方法归纳二次函数的实际应用(1)在根据实际问题建立函数解析式后,可利用配方法、判别式法、换元法、函数的单调性等方法来求函数的最值,从而解决实际问题中的最值问题.二次函数求最值最好结合二次函数的图像来解答.(2)对于本题要清楚平均每天的销售利润=平均每天的销售量×每箱销售利润.
跟踪训练2 有A,B两城相距100 km,在A,B两城之间距A城x km的D地建一核电站给这两城供电.为保证城市安全,核电站与城市距离不得少于10 km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A城供电量为20亿度/月,B城供电量为10亿度/月.(1)把月供电总费用y表示成x的函数,并求定义域;(2)核电站建在距A城多远时,才能使供电费用最小?
题型3 分段函数模型的应用[经典例题]例3 WAP手机上网每月使用量在500 min以下(包括500 min),按30元计费;超过500 min的部分按0.15元/min计费.假如上网时间过短(小于60 min)使用量在1 min以下不计费,在1 min以上(包括1 min)按0.5元/min计费.计费时间均取整数,不足1 min的按1 min计算.WAP手机上网不收通话费和漫游费.(1)写出上网时间x min与所付费用y元之间的函数关系式.(2)12月份小王WAP上网使用量为20 h,要付多少钱?(3)小王10月份付了90元的WAP上网费,那么他上网的时间是多少?
方法归纳分段函数的实际应用(1)在刻画实际问题中,变量之间的关系因自变量x取值范围的不同,对应的函数关系不能用同一个解析式表示时,常用分段函数建立函数模型解决问题.(2)分段函数是指自变量在不同的范围内有着不同对应法则的函数.求解分段函数的最值问题时应注意:分段函数的最大值是各段函数最大值中较大的一个,分解函数的最小值是各段函数最小值中较小的一个.
人教B版 (2019)3.4 数学建模活动:决定苹果的最佳出售时间点课文内容ppt课件: 这是一份人教B版 (2019)3.4 数学建模活动:决定苹果的最佳出售时间点课文内容ppt课件,共16页。PPT课件主要包含了探究点最值函数模型,学习目标,课前预习,数学抽象,表达问题,构建模型,发现问题,提出问题,分析问题,建立模型等内容,欢迎下载使用。
2021学年3.4 数学建模活动:决定苹果的最佳出售时间点优秀课件ppt: 这是一份2021学年3.4 数学建模活动:决定苹果的最佳出售时间点优秀课件ppt,文件包含33《函数的应用一》课件PPTpptx、33《函数的应用一》教案docx等2份课件配套教学资源,其中PPT共27页, 欢迎下载使用。
数学人教B版 (2019)3.4 数学建模活动:决定苹果的最佳出售时间点教学课件ppt: 这是一份数学人教B版 (2019)3.4 数学建模活动:决定苹果的最佳出售时间点教学课件ppt,共23页。PPT课件主要包含了建立模型,数学建模等内容,欢迎下载使用。