【解析版】安庆市望江县2022学年七年级上期末数学试卷
展开
这是一份【解析版】安庆市望江县2022学年七年级上期末数学试卷,共13页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
安徽省安庆市望江县2022学年七年级上学期期末数学试卷一、选择题(每题4分,共40分)1.的相反数是() A. 2 B. ﹣2 C. D. ﹣ 2.我国对农村义务教育阶段贫困家庭的学生实行“两免一补”政策,2007年至2010年全国财政约安排了231亿元资金用于“两免一补”.这项资金用科学记数法表示为() A. 2.31元 B. 2.31×108元 C. 231×108元 D. 2.31×1010元 3.下列各式中,正确的是() A. 3a+b=3ab B. 3a2+2a2=5a4 C. ﹣2(x﹣4)=﹣2x+4 D. ﹣a2b+2ba2=a2b 4.如图,桌上放着一个圆锥和一个长方体模型,从上面看这两种物品得到的平面图形是() A. B. C. D. 5.在﹣0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的字是() A. 1 B. 2 C. 4 D. 8 6.计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(1111)2转换成十进制形式是数() A. 8 B. 15 C. 20 D. 30 7.如果x=2是方程x﹣m=﹣1的解,那么m的值是() A. 0 B. 2 C. ﹣2 D. ﹣6 8.一个角补角是它的余角的4倍,这个角的度数是() A. 135° B. 45° C. 60° D. 30° 9.若a﹣b=﹣2,则2a﹣2b+5的值为() A. 1 B. ﹣1 C. 9 D. ﹣9 10.如图,若将三个同样大小的正方形的一个顶点重合放置,则∠1的度数为() A. 15° B. 20° C. 25° D. 30° 二、填空题(本题满分20分,每题5分)11.小朋友在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为:. 12.小明在抄写一个5次单项式﹣xy□z□时,误把字母y、z上的指数给漏掉了,原单项式可能是(填一个即可). 13.不讲究说话艺术常引起误会.相传一个人不太会说话,一次他设宴请客,眼看快到中午了,还有几个人没有来,就自言自语地说:“怎么该来的还不来呢?”在座的客人一听,想:难道我们是不该来的?于是有一半人走了,他一看很着急,又说:“嗨,不该走的倒走了!”剩下的人一听,是我们该走啊!于是剩下的又有三分之二的人离开了,他着急的直拍大腿,连说:“我说的不是他们.”结果仅剩下的3个人也都告辞走了.聪明的你知道开始来了多少客人吗?如果设开始来了x位客人,那么所列方程为(只需列出方程,不解答). 14.有这么一个数字游戏:第一步:取一个自然数n1=5,计算n12+1得a1;第二步:算出a1的各位数字之和,得n2,计算n22+1得a2;第三步:算出a2的各位数字之和,得n3,再计算n32+1得a3,….依此类推,则a2011=. 三、(本题满分16分,每题8分)15.计算:|﹣15|﹣8÷(﹣2)+4×(﹣5) 16.化简:2(x2﹣xy)﹣3(2x2﹣3xy) 四、(本题满分16分,每题8分)17.解方程:﹣=1. 18.已知:a、b互为相反数,c、d互为倒数,|x|=2,y=1,且x<y,求:(a+b﹣1)x﹣cdy+4x+3y的值. 五、(本题满分20分,每题10分)19.如图,线段AB、点C在正方形网格中,所有小正方形的边长都相等.利用画图工具画图:(1)画线段AC、BC;(2)延长线段AB到点D,使BD=AB;(3)画直线CD.利用画图工具比较大小:(1)线段CD与线段CB的大小:;(2)∠CBD与∠A的大小. 20.(1)如图甲,在长方形中挖去一个三角形,用a、b的式子表示图中阴影部分的面积,并求当a=10,b=8时阴影部分的面积.(2)如图乙,在长方形中挖去三个三角形,用a、b的式子表示图中阴影部分的面积. 六、(本题12分)21.鸡兔同笼是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题,书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数有94只脚.问笼中各有几只鸡和兔? 七、(本题满分12分)22.某同学在安德利、家乐福超市发现他看中的随身听单价相同,书包的单价也相同,已知随身听和书包的单价之和为470元,且随身听的单价比书包单价的7倍少10元.(1)随身听和书包的单价各是多少元?(2)某天该同学上街,恰好两家超市都进促销活动,安德利超市所有商品八折销售;家乐福超市全场购满100元返30元(不足100元不返回),这个同学想买这两件商品,请你帮他设计出最佳购买方案,并求出他所付的费用. 八、(本题满分14分)23.如图,已知数轴上A、B两点所表示的数分别为﹣2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N为PB的中点,当点P在射线BA上运动时;MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由. 安徽省安庆市望江县2022学年七年级上学期期末数学试卷 一、选择题(每题4分,共40分)1.的相反数是() A. 2 B. ﹣2 C. D. ﹣ 考点: 绝对值;相反数. 分析: 根据相反数的概念和绝对值的性质进行解答.解答: 解:的相反数是﹣.故选D.点评: 解答本题的关键是弄清绝对值的性质和相反数的概念.相反数:只有符号不同而绝对值相等的两个数互为相反数.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 2.我国对农村义务教育阶段贫困家庭的学生实行“两免一补”政策,2007年至2010年全国财政约安排了231亿元资金用于“两免一补”.这项资金用科学记数法表示为() A. 2.31元 B. 2.31×108元 C. 231×108元 D. 2.31×1010元 考点: 科学记数法—表示较大的数. 分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答: 解:231亿=231 0000 0000=2.31×1010,故选:D.点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 3.下列各式中,正确的是() A. 3a+b=3ab B. 3a2+2a2=5a4 C. ﹣2(x﹣4)=﹣2x+4 D. ﹣a2b+2ba2=a2b 考点: 合并同类项;去括号与添括号. 分析: 合并同类项,系数相加字母和字母的指数不变.解答: 解:A、3a与b不是同类项,不能合并,即3a+b≠3a;故本选项错误;B、3a2+2a2=5a2,3a2与2a2相加,系数相加,指数不变;故本选项错误;C、﹣2(x﹣4)=﹣2x﹣2×(﹣4)=﹣2x+8,故本选项错误;D、﹣a2b+2ba2=﹣a2b+2a2b=a2b(﹣1+2)=a2b;故本选项正确;故选D.点评: 本题考查了合并同类项、去括号与添括号.注意,去括号时,如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 4.如图,桌上放着一个圆锥和一个长方体模型,从上面看这两种物品得到的平面图形是() A. B. C. D. 考点: 简单组合体的三视图. 分析: 找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答: 解:从上面看可得.故选C.点评: 本题考查了三视图的知识,俯视图是从物体的上面看得到的视图. 5.在﹣0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的字是() A. 1 B. 2 C. 4 D. 8 考点: 有理数大小比较. 分析: 对负数来说,绝对值大的反而小,因此用3代替其中的一个数字,使她的绝对值最小即为正确选项.解答: 解:逐个代替后这四个数分别为﹣0.3428,﹣0.1328,﹣0.1438,﹣0.1423.﹣0.1328的绝对值最小,只有C符合.故选C.点评: 考查有理数大小比较法则.两个负数,绝对值大的反而小. 6.计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(1111)2转换成十进制形式是数() A. 8 B. 15 C. 20 D. 30 考点: 有理数的混合运算. 专题: 压轴题;新定义.分析: 按照题意中规律,可得(1111)2=1×23+1×22+1×21+1×20,计算的结果为对应的十进制的数.解答: 解:∵(1101)2=1×23+1×22+0×21+1×20=13,∴(1111)2=1×23+1×22+1×21+1×20=8+4+2+1,=15.故选B.点评: 此题的关键是读懂题意,按照规定的规律进行计算. 7.如果x=2是方程x﹣m=﹣1的解,那么m的值是() A. 0 B. 2 C. ﹣2 D. ﹣6 考点: 一元一次方程的解. 分析: 根据一元一次方程的解的定义,将x=2代入已知方程列出关于m的新方程,通过解新方程即可求得m的值.解答: 解:根据题意,得×2﹣m=﹣1,即1﹣m=﹣1,解得,m=2;故选B.点评: 本题考查了一元一次方程的解的定义.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 8.一个角补角是它的余角的4倍,这个角的度数是() A. 135° B. 45° C. 60° D. 30° 考点: 余角和补角. 分析: 设这个角的度数为x,则它的补角的度数为180﹣x,它的余角的度数为90﹣x,由补角是它的余角的4倍列方程解答即可.解答: 解:设这个角的度数为x,180﹣x=(90﹣x)×4解得x=60.故选:C.点评: 此题考查余角和补角的意义,找出等量关系:补角=余角×4列方程解答即可. 9.若a﹣b=﹣2,则2a﹣2b+5的值为() A. 1 B. ﹣1 C. 9 D. ﹣9 考点: 代数式求值. 分析: 把a﹣b的值整体代入所求代数式求值即可.解答: 解:∵a﹣b=﹣2,∴2a﹣2b+5=2(a+b)+5=2×(﹣2)+5=1.故选A.点评: 本题考查了代数式求值,解题的关键是注意整体代入. 10.如图,若将三个同样大小的正方形的一个顶点重合放置,则∠1的度数为() A. 15° B. 20° C. 25° D. 30°考点: 余角和补角. 分析: 根据∠1=∠BOD+EOC﹣∠BOE,利用正方形的角都是直角,即可求得∠BOD和∠EOC的度数从而求解.解答: 解:∵∠BOD=90°﹣∠AOB=90°﹣30°=60°∠EOC=90°﹣∠EOF=90°﹣40°=50°又∵∠1=∠BOD+EOC﹣∠BOE∴∠1=60°+50°﹣90°=20°故选:B.点评: 本题主要考查了角度的计算,正确理解∠1=∠BOD+EOC﹣∠BOE这一关系是解决本题的关键. 二、填空题(本题满分20分,每题5分)11.小朋友在用玩具枪瞄准时,总是用一只眼对准准星和目标,用数学知识解释为:两点确定一条直线. 考点: 直线的性质:两点确定一条直线. 专题: 常规题型.分析: 根据两点确定一条直线的知识解答.解答: 解:∵准星与目标两点,∴利用的数学知识是:两点确定一条直线.故答案为:两点确定一条直线.点评: 本题考查了两点确定一条直线的性质,是基础知识,需要熟练掌握. 12.小明在抄写一个5次单项式﹣xy□z□时,误把字母y、z上的指数给漏掉了,原单项式可能是﹣(填一个即可). 考点: 单项式. 专题: 开放型.分析: 根据单项式的次数是字母指数的和,单项式的次数是5,可得答案.解答: 解:原单项式是﹣,故答案为:﹣.点评: 本题考查了单项式,单项式的次数是字母指数的和,注意字母指数的和是5,x的次数是1. 13.不讲究说话艺术常引起误会.相传一个人不太会说话,一次他设宴请客,眼看快到中午了,还有几个人没有来,就自言自语地说:“怎么该来的还不来呢?”在座的客人一听,想:难道我们是不该来的?于是有一半人走了,他一看很着急,又说:“嗨,不该走的倒走了!”剩下的人一听,是我们该走啊!于是剩下的又有三分之二的人离开了,他着急的直拍大腿,连说:“我说的不是他们.”结果仅剩下的3个人也都告辞走了.聪明的你知道开始来了多少客人吗?如果设开始来了x位客人,那么所列方程为(只需列出方程,不解答). 考点: 由实际问题抽象出一元一次方程. 分析: 设开始来了x位客人,根据先走了一半,又走了剩下的三分之二的,结果仅剩下的3个人也都告辞走了从而可列方程求解.解答: 解:设开始来了x位客人,则x+x+3=x.故答案为:x+x+3=x.点评: 本题考查理解题意的能力,关键以总人数做为等量关系列方程. 14.有这么一个数字游戏:第一步:取一个自然数n1=5,计算n12+1得a1;第二步:算出a1的各位数字之和,得n2,计算n22+1得a2;第三步:算出a2的各位数字之和,得n3,再计算n32+1得a3,….依此类推,则a2011=26. 考点: 整数问题的综合运用. 专题: 规律型.分析: 此题应该根据n1、n2、n3、n4以及a1、a2、a3、a4的值得到此题的一般化规律为每3个数是一个循环,然后根据规律求出a2011的值.解答: 解:由题意知:n1=5,a1=5×5+1=26;n2=8,a2=8×8+1=65;n3=11,a3=11×11+1=122;n4=5,a4=5×5+1=26;…∵=670…1,∴n2011是第671个循环中的第1个,∴a2011=a1=26.故答案为:26.点评: 此题主要考查了整数的综合应用,解答此类规律型问题,一定要根据简单的例子找出题目的一般化规律,然后根据规律去求特定的值. 三、(本题满分16分,每题8分)15.计算:|﹣15|﹣8÷(﹣2)+4×(﹣5) 考点: 有理数的混合运算. 专题: 计算题.分析: 原式先计算乘除运算,再计算加减运算即可得到结果.解答: 解:原式=15+4﹣20=﹣1.点评: 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.化简:2(x2﹣xy)﹣3(2x2﹣3xy) 考点: 整式的加减. 专题: 计算题.分析: 先利用乘法分配律去括号,再合并同类项即可.解答: 解:原式=2x2﹣2xy﹣6x2+9xy=﹣4x2+7xy.点评: 本题考查了整式的加减.整式的加减其实就是合并同类项,注意可以运用乘法分配律去括号. 四、(本题满分16分,每题8分)17.解方程:﹣=1. 考点: 解一元一次方程. 专题: 方程思想.分析: 先去分母;然后移项、合并同类项;最后化未知数的系数为1.解答: 解:由原方程去分母,得5x﹣15﹣8x﹣2=10,移项、合并同类项,得﹣3x=27,解得,x=﹣9.点评: 本题考查了一元一次方程的解法.解一元一次方程常见的过程有去分母、去括号、移项、系数化为1等. 18.已知:a、b互为相反数,c、d互为倒数,|x|=2,y=1,且x<y,求:(a+b﹣1)x﹣cdy+4x+3y的值. 考点: 代数式求值;相反数;绝对值;倒数. 分析: 根据相反数、倒数的概念可得a+b=0,cd=1,而|x|=2,y=1,且x<y,易求x=﹣2,然后把a+b、cd、x、y的值代入所求代数式计算即可.解答: 解:∵a、b互为相反数,c、d互为倒数,|∴a+b=0,cd=1,∵|x|=2,y=1,且x<y,∴x=﹣2,∴(a+b﹣1)x﹣cdy+4x+3y=﹣x﹣y+4x+3y=3x+2y=﹣6+2=﹣4.点评: 本题考查了代数式求值,解题的关键是熟练掌握相反数、绝对值、倒数的概念,并注意整体代入. 五、(本题满分20分,每题10分)19.如图,线段AB、点C在正方形网格中,所有小正方形的边长都相等.利用画图工具画图:(1)画线段AC、BC;(2)延长线段AB到点D,使BD=AB;(3)画直线CD.利用画图工具比较大小:(1)线段CD与线段CB的大小:CD<CB;(2)∠CBD与∠A的大小∠CBD>∠A. 考点: 作图—复杂作图;比较线段的长短;角的大小比较. 分析: 利用画图工具画图:(1)利用画图工具画图:画线段AC、BC,连接AC、BC即可;(2)延长线段AB,截取BD=AB;(3)所作直线经过C、D即可.利用画图工具比较大小:(1)量出线段CD与线段CB的长度即可填写;(2)量出∠CBD与∠A的大小即可填写.解答: 解:利用画图工具画图:(1)(2)(3)作图如下: 利用画图工具比较大小:(1)线段CD与线段CB的大小:CD<CB;(2)∠CBD与∠A的大小∠CBD>∠A.故答案为:CD<CB;∠CBD>∠A.点评: 考查了作图﹣复杂作图,比较线段的长短和角的大小比较.作两点之间的线段,连接两点即可,由两点作直线,连接两点并向两个方向延长即可得这两点确定的直线.作射线时以一个点为原点,并向另一个方向无限延长. 20.(1)如图甲,在长方形中挖去一个三角形,用a、b的式子表示图中阴影部分的面积,并求当a=10,b=8时阴影部分的面积.(2)如图乙,在长方形中挖去三个三角形,用a、b的式子表示图中阴影部分的面积. 考点: 列代数式;代数式求值. 分析: (1)阴影部分的面积=边长为a,b的长方形的面积﹣底边长为a,高为b的三角形的面积,再把a=10,b=8代入得到代数式求值即可.(2)阴影部分的面积=底边长为a,高为b的3个三角形的面积和,进而得出答案即可.解答: 解:(1)阴影部分面积为:ab﹣ab=ab,当a=10,b=8时,阴影部分面积为:×10×8=40; (2)阴影部分面积为:ab×3=ab或3ab﹣ab×3=ab.点评: 此题考查了列代数式及代数式求值问题;得到阴影部分面积的关系式是解决本题的关键. 六、(本题12分)21.鸡兔同笼是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题,书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数有94只脚.问笼中各有几只鸡和兔? 考点: 一元一次方程的应用. 分析: 设鸡有x只,则兔有(35﹣x)只,根据鸡有2只脚,兔有4只脚,笼子里面总共94只脚,可得出方程,解出即可.解答: 解:设鸡有x只,则兔有(35﹣x)只,由题意得:2x+4(35﹣x)=94,解得:x=23,则35﹣x=12.答:鸡有23只,兔有12只.点评: 本题考查了一元一次方程的应用,解答本题需要明确鸡和兔子都只有一个头,得出两种动物的数量. 七、(本题满分12分)22.某同学在安德利、家乐福超市发现他看中的随身听单价相同,书包的单价也相同,已知随身听和书包的单价之和为470元,且随身听的单价比书包单价的7倍少10元.(1)随身听和书包的单价各是多少元?(2)某天该同学上街,恰好两家超市都进促销活动,安德利超市所有商品八折销售;家乐福超市全场购满100元返30元(不足100元不返回),这个同学想买这两件商品,请你帮他设计出最佳购买方案,并求出他所付的费用. 考点: 一元一次方程的应用. 专题: 应用题.分析: (1)利用随身听的单价比书包单价的7倍少10元,可设书包单价为x元,则随身听的单价为(7x﹣10)元,然后根据价格和列方程,再解方程求出x和7x﹣10即可;(2)安德利超市所有商品八折销售,则470元的价格实际费用为470×0.8;家乐福超市全场购满100元返30元(不足100元不返回),则470元的价格要返4个30元,实际费用为470﹣120,然后比较大小即可.解答: 解:(1)设书包单价为x元,则随身听的单价为(7x﹣10)元,根据题意得x+7x﹣10=470,解得x=60(元),则7x﹣10=410(元),答:随身听和书包的单价分别是410元、60元;(2)到安德利超市买这两件商品的费用为470×0.8=376(元),到家乐福超市买这两件商品的费用=470﹣4×30=350(元),所以这个同学要到家乐福超市买这两件商品,费用为350元.点评: 本题考查了一元一次方程的应用:利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答. 八、(本题满分14分)23.如图,已知数轴上A、B两点所表示的数分别为﹣2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N为PB的中点,当点P在射线BA上运动时;MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由. 考点: 比较线段的长短;数轴. 专题: 数形结合;分类讨论.分析: (1)根据数轴与绝对值知,AB=|OB|+|OA|;(2)分两种情况进行讨论:①当点P在A、B两点之间运动时;②当点P在点A的左侧运动时.解答: 解:(1)∵A,B两点所表示的数分别为﹣2和8,∴0A=2,OB=8∴AB=OA+OB=lO.(2)线段MN的长度不发生变化,其值为5.分下面两种情况:①当点P在A、B两点之间运动时(如图甲).MN=MP+NP=AP+BP=AB=5②当点P在点A的左侧运动时(如图乙).MN=NP﹣MP=BP﹣AP=AB=5综上所述,线段MN的长度不发生变化,其值为5.点评: 本题主要考查了数轴、比较线段的才长短.解答此题时,既采用了形象、直观的“数形结合”的数学思想,又利用了不至于漏解的分类讨论的数学思想.
相关试卷
这是一份2023-2024学年安徽省安庆市望江县七年级(上)期末数学试卷(含详细答案解析),共14页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年安徽省安庆市望江县七年级(上)期末数学试卷(含解析),共14页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年安徽省安庆市望江县杨林初级中学八年级(下)期末数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。