人教版八年级数学下册【说课稿】 菱形的判定
展开菱形的判定
敬重的各位领导老师:
大家好!我说课的题目是《菱形的判定》。我针对本节课的教学内容主要从教材地位作用、学情分析、教学目标分析、教学方法分析、教学过程分析、板书设计等几方面逐一加以说明。
一、教材的地位和作用
本节课选自人教版八班级下册第十九章其次节第4课时,主要内容是菱形的判定,让同学尝试从不同角度寻求菱形的判定方法,并能有效地解决实际问题。它是在探究平行四边形和矩形的判定方法之后,又一个特殊四边形判定方法的探究,它不仅是三角形、四边形学问的延长,更为探究正方形的性质与判定指明白方向。本节课通过同学观看猜想,小组争辩合作沟通后归纳证明得出结论,培育同学的推理力量和演绎力量,为以后圆等学问的学习奠定基础。
二、学情分析
我从初一开头就对同学进行数学理念数学思考数学意识的培育,所以在新学问的接受方面同学还有一些优势,本节课依据这些特点适当的进行了难度的设计和环节上的考虑。从认知状况来说,同学在此之前已经学习了平行四边形的判定,对判定有了初步的生疏,这为顺当完成本节课的教学任务打下了基础,同学可能会产生肯定的困难,所以教学中应予以简洁明白,深化浅出的分析。
从心理特征来说,学校阶段的同学规律思维从阅历型逐步向理论型进展,观看力量,记忆力量和想象力量也随着快速进展。但同时,这一阶段的同学好动,留意力易分散,爱发表见解,期望得到老师的表扬,所以自己在教学中应抓住这些特点,一方面运用直观生动的形象,引发同学的爱好,使他们的留意力始终集中在课堂上;另一方面,要制造条件和机会,让同学发表见解,发挥同学学习的主动性,让同学开心地学习。
三、教学目标分析
依据本节课的教学内容,结合新课标理念, 我从四个方面制定了教学目标:
(一)学问技能:经受菱形的判定方法的探究过程,把握菱形的三种判定方法.
(二)过程方法:经受利用菱形的定义探究菱形其他判定方法的过程,培育同学的动手试验、观看、推理意识,进展同学的形象思维和规律推理力量.依据菱形的判定定理进行简洁的证明,培育同学的规律推理力量和演绎力量.尝试从不同角度寻求菱形的判定方法,并能有效的解决问题,尝试评价不同判定方法之间的差异.通过对菱形判定过程的反思,获得机敏判定四边形是菱形的阅历.
(三)情感态度:在探究菱形的判定方法的活动中获得成功的体验,从成功中体会争辩数学问题的乐趣,让同学学会主动寻求解决问题的途径,从而增加同学学习数学的爱好,树立学好数学的信念。通过运用菱形的判定和性质,积累数学活动阅历,提高同学科学思维素养,进而教会同学如何学习数学的力量和习惯。
四、教学重点、难点:
基于本节课的主要内容是围围着菱形的判定方法而开放的,菱形的判定方法在本节课中处于核心地位,所以我确定本节课的教学重点为菱形判定方法的探究。由于同学还没有具备辨证分析问题的力量,所以我确定本节课的教学难点是菱形判定方法的探究及机敏运用。
依据教学目标,为突出重点,突破难点,在探究菱形的有关对角线的判定定理时,用教具演示,四边形的两条对角线在保持相互平分的前提下进行转动,当它们的位置关系是垂直时,平行四边形变为菱形,给同学以直观感受,印象深刻;在探究菱形的另一个判定定理时,让同学依据它的特殊点去猜想边之间满足的关系,从而得出定理,拓展同学的思维空间。
五、教学方法分析
教法:从老师教的角度,要留意启发式教学。在教学过程中,老师是学习的组织者、指导者,教学的一切活动都必需以强调同学的主动性、乐观性为动身点。本节课我接受启发式、争辩式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在同学学问的“最近进展区”设置问题,提倡同学主动参与教学实践活动,以独立思考和相互沟通的形式,在老师的指导下发觉、分析和解决问题,在引导分析时,给同学流出足够的思考时间和空间,让同学去联想、探究,从真正意义上完成对学问的自我建构。
学法:从同学学的角度,提倡自主、合作和探究学习。在教学过程中,同学是学习的主体,让同学体现学问的发生、形成、进展过程,体会到探究——发觉——归纳——验证的学习方式和数形结合的思想,培育同学的独立学习的良好习惯。同时,在教学过程中,接受多媒体帮助教学,以直观呈现教学素材,从而更好地激发同学的学习爱好,增大教学容量,提高教学效率。
六、教学过程分析
活动1、提出问题,激发爱好
首先,复习菱形的定义和性质, 同学对菱形再生疏,尤其对菱形的特殊性质的生疏。通过老师恰当设疑并进一步讲授,明确菱形的第一种判定方法,直接引入了活动主题。同时,引出课题——菱形还其它的判定方法吗?激发同学探究的欲望。
活动2、尝试发觉,探究新知
让同学真实经受菱形判定方法的形成过程,设计了一个探究活动。用一长一短两根细木条的中点处固定一个小钉子,做成一个可转动的十字架,四四周上一根橡皮筋,做成一个四边形。
老师引导同学观看四边形的特征,通过观看,发觉这个四边形总是平行四边形,并口头完成证明。同学连续转动木条,探究木条具备怎样的条件就可变为菱形,同学经过试验操作,开展独立思考或合作学习。同学代表上台对猜想(即当木条相互垂直时,四边形为菱形)加以论证。体现学问的发生、形成、进展过程,体会到探究——发觉——归纳——验证的学习方式和数形结合的思想。 通过由浅到深,由简到繁的思考过程,加强训练,拓宽同学的思路,进展同学的思维力量,
归纳菱形的判定定理:对角线相互垂直的平行四边形是菱形。
设计意图:通过试验操作,巩固了平行四边形的判定方法,培育同学的观看力量和推理力量,经受探究物体与图形的外形、大小、位置关系和变换的过程,同学的猜想意识,感受直观操作猜想的便捷性,培育同学的观看、试验、猜想等合情推理力量;通过对猜想的论证,让同学进一步生疏规律推理的必要性,很好地突出了教学的重点。
活动3、自主分析,深化探究
例3、如图,□ABCD的对角线AC、BD相交于点O,且
AB=5,AO=4,BO=3,求证:□ABCD是菱形。
同学分析题意,通过沟通,明确解体思路。老师组织同学沟通,
并引导同学选择适当的推断方法,指导同学完成论证,并规范证明。
设计意图:从简洁问题动身,让同学在证明过程中把握菱形的其次种判别方法的应用,达到“学数学,用数学”的目的,进一步培育同学解决问题力量和推理论证力量。
活动4、探究与归纳菱形的第三个判定方法
先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,提问:观看画图的过程,你能说明得到的四边形为什么是菱形吗?你能得到什么结论?
同学观看思考后,开放争辩,共同寻求这个四边形是菱形的缘由。老师深化到同学当中,指导同学探究。同学代表发言,指出该四边形四条边相等,即有两组对边相等,它首先是一个平行四边形,又有一组邻边相等,依据菱形定义即可判定该四边形是菱形。得出从一般的四边形直接判定菱形的方法:四边相等的四边形是菱形,老师指导同学规范完成几何论证过程。
设计意图:通过多媒体动画演示,让同学从直观操作的角度去发觉问题,使探究的问题形象化、具体化,培育同学形象思维。通过说明理由,利用平行四边形的判定和菱形的定义,判定该四边形是菱形,进一步培育同学抽象思维,本活动进一步体现了试验几何和论证几何的有机结合。
活动5、菱形第三个判定方法的应用
如图,顺次连接矩形ABCD各边的中点,得到四边形EFGH,
求证:四边形EFGH是菱形。
同学独立思考,老师点拨证明的思路。同学板演,老师点评。
设计意图:通过添加老师教学用书上的一道范例题,同学在做题之后,进一步把握四边相等的四边形是菱形的这一判定方法。既巩固了三角形的中位线定理和矩形的性质,又达到了学以致用的目的,培育了同学的应用意识。
活动6、反馈练习,夯实基础
几道简洁的推断题和填空题,老师巡察,引导同学;同学课堂练习,然后上台演示自己的答案,并与同伴沟通,给同学一个独立的思考和练习时间,加深同学对菱形判定方法的理解与运用,进一步提高同学运用学问的力量,对练习中消灭的状况可实行互评、互议的形式,达到准时查漏补缺的效果。
活动6:小结评价,畅谈收获
强化同学对学问的理解和记忆,初步培育同学的自我评价力量。鼓舞同学从三个方面总结。学问点、易错点以及数学思考。
活动7:布置作业 学以致用
留分层作业,适当加点难度。通过基础作业巩固所学学问,通过选作作业为学有余力的同学创设进展空间。
以上几个环节环环相扣,层层深化,并充分体现老师与同学的沟通互动,在老师的整体调控下,同学通过动脑思考、层层递进,对学问的理解逐步深化,使课堂效益达到最佳状态。
七、板书设计
设计意图:主要体现板书的示范性、规律性、科学性、艺术性。让同学感受到学习的重点内容,在大屏幕帮助的同时,体现学习的欢快并体现本节课的精华。
总之,本节课的教学,我重点关注教学目标的完成状况,更关注同学的参与状态、思维状态、课堂生成的状况,准时精确 的把握同学的思维,把老师的作用精确 地加入到同学的学习状态中。在传授学问的同时,留意培育同学的数学力量和数学学习方法。培育同学主动探究,敢于实践的创新精神,让同学学会主动寻求解决问题的途径,从成功中体会争辩数学问题的乐趣,从而增加同学学习数学的爱好,树立学好数学的信念。让同学体会到学习数学的价值和乐趣,让同学真正地感受到学习数学的重要性:数学来源于生活,又应用于生活。
课后作业:教材
本节课活动2通过同学试验观看、发觉、推理等环节,探究出菱形的判定方法。活动4通过多媒体演示画图过程,同学观看、推理、探究出菱形的另一种判定方法。活动2和活动4是本节课的重点。活动3和活动5都是运用菱形的判定证明,这是本节难点。为了突破难点,接受同学独立思考,老师引导,同学小组争辩,合作沟通的方式分析问题并解决问题。

