上海市普陀区2021-2022学年初中数学毕业考试模拟冲刺卷含解析
展开
这是一份上海市普陀区2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共26页。试卷主要包含了的相反数是,二次函数y=ax2+bx+c,一组数据,如图,,,则的大小是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A.2 B.8 C.﹣2 D.﹣82.如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为π cm2,则扇形圆心角的度数为( )A.120° B.140° C.150° D.160°3.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为( )A. B. C. D.4.的相反数是 A.4 B. C. D.5.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,若∠CAB=22.5°,CD=8cm,则⊙O的半径为( )A.8cm B.4cm C.4cm D.5cm6.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是( )A.1 B.2 C.3 D.47.一组数据:6,3,4,5,7的平均数和中位数分别是 ( )A.5,5 B.5,6 C.6,5 D.6,68.如图,,,则的大小是 A. B. C. D.9.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为( )A.15m B.25m C.30m D.20m10.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( )A.右转80° B.左转80° C.右转100° D.左转100°11.下列运算正确的是( )A.a2·a3﹦a6 B.a3+ a3﹦a6 C.|-a2|﹦a2 D.(-a2)3﹦a612.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是( )A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分式方程=1的解为_____14.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为_____.15.已知点A(2,0),B(0,2),C(-1,m)在同一条直线上,则m的值为___________.16.方程=1的解是_____.17.股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是_____.18.如图,已知在平行四边形ABCD中,E是边AB的中点,F在边AD上,且AF:FD=2:1,如果=,=,那么=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简代数式,再从范围内选取一个合适的整数作为的值代入求值。20.(6分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.21.(6分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m= %,这次共抽取 名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?22.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.23.(8分)(1)如图1,半径为2的圆O内有一点P,切OP=1,弦AB过点P,则弦AB长度的最大值为__________;最小值为 ___________.图 ①(2)如图2,△ABC是葛叔叔家的菜地示意图,其中∠ABC=90°,AB=80米,BC=60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔想建的鱼塘是四边形ABCD,且满足∠ADC=60°,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由.图 ②24.(10分)如图,在平面直角坐标系中,抛物线的图象经过和两点,且与轴交于,直线是抛物线的对称轴,过点的直线与直线相交于点,且点在第一象限.(1)求该抛物线的解析式;(2)若直线和直线、轴围成的三角形面积为6,求此直线的解析式;(3)点在抛物线的对称轴上,与直线和轴都相切,求点的坐标.25.(10分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图. 根据上述信息,解答下列问题: (1)本次抽取的学生人数是 ______ ;扇形统计图中的圆心角α等于 ______ ;补全统计直方图; (2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.26.(12分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.27.(12分)在平面直角坐标系xOy中,函数(x>0)的图象与直线l1:y=x+b交于点A(3,a-2).(1)求a,b的值;(2)直线l2:y=-x+m与x轴交于点B,与直线l1交于点C,若S△ABC≥6,求m的取值范围.
参考答案 一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.2、C【解析】
根据扇形的面积公式列方程即可得到结论.【详解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,设扇形圆心角的度数为α,∵纸面面积为π cm2,∴,∴α=150°,故选:C.【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积= .3、B【解析】
连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=,即可得BF= ,再证明∠BFC=90°,最后利用勾股定理求得CF=.【详解】连接BF,由折叠可知AE垂直平分BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,则BF= ,∵FE=BE=EC,∴∠BFC=90°,∴CF== .故选B.【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.4、A【解析】
直接利用相反数的定义结合绝对值的定义分析得出答案.【详解】-1的相反数为1,则1的绝对值是1.故选A.【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键.5、C【解析】
连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.【详解】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴ ∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴ 故选:C.【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.6、C【解析】
试题解析:∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正确;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正确;∵当x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③错误;∵由图象可知x=﹣1时该二次函数取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正确∴正确的有①②④三个,故选C.考点:二次函数图象与系数的关系.【详解】请在此输入详解!7、A【解析】试题分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答.平均数为:×(6+3+4+1+7)=1,按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1.故选A.考点:中位数;算术平均数.8、D【解析】
依据,即可得到,再根据,即可得到.【详解】解:如图,,,又,,故选:D.【点睛】本题主要考查了平行线的性质,两直线平行,同位角相等.9、D【解析】
根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.10、A【解析】
60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.故选A.11、C【解析】
根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【详解】a2·a3﹦a5,故A项错误;a3+ a3﹦2a3,故B项错误;a3+ a3﹦- a6,故D项错误,选C.【点睛】本题考查同底数幂加减乘除及乘方,解题的关键是清楚运算法则.12、B【解析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13、x=0.1【解析】分析:方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.详解:方程两边都乘以2(x2﹣1)得,8x+2﹣1x﹣1=2x2﹣2,解得x1=1,x2=0.1,检验:当x=0.1时,x﹣1=0.1﹣1=﹣0.1≠0,当x=1时,x﹣1=0,所以x=0.1是方程的解,故原分式方程的解是x=0.1.故答案为:x=0.1点睛:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14、1【解析】在△AGF和△ACF中,,∴△AGF≌△ACF,∴AG=AC=4,GF=CF,则BG=AB−AG=6−4=2.又∵BE=CE,∴EF是△BCG的中位线,∴EF=BG=1.故答案是:1.15、3【解析】设过点A(2,0)和点B(0,2)的直线的解析式为:,则 ,解得: ,∴直线AB的解析式为:,∵点C(-1,m)在直线AB上,∴,即.故答案为3.点睛:在平面直角坐标系中,已知三点共线和其中两点的坐标,求第3点坐标中待定字母的值时,通常先由已知两点的坐标求出过这两点的直线的解析式,在将第3点的坐标代入所求解析式中,即可求得待定字母的值.16、x=3【解析】去分母得:x﹣1=2,解得:x=3,经检验x=3是分式方程的解,故答案为3.【点睛】本题主要考查解分式方程,解分式方程的思路是将分式方程化为整式方程,然后求解.去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解.17、.【解析】
股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,设这两天此股票股价的平均增长率为x,每天相对于前一天就上涨到1+x,由此列出方程解答即可.【详解】设这两天此股票股价的平均增长率为x,由题意得(1﹣10%)(1+x)2=1.故答案为:(1﹣10%)(1+x)2=1.【点睛】本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为18、【解析】
根据,只要求出、即可解决问题;【详解】∵四边形是平行四边形,,,,,,,,.故答案为.【点睛】本题考查的知识点是平面向量,平行四边形的性质,解题关键是表达出、. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、-2【解析】
先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.【详解】原式== = ,∵x≠±1且x≠0,∴在-1≤x≤2中符合条件的x的值为x=2,则原式=- =-2.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.20、见解析【解析】
根据角平分线的定义可得∠ABF=∠CBF,由已知条件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根据余角的性质可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可证得结论.【详解】∵BF 平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【点睛】本题考查了等腰三角形的判定、直角三角形的性质,根据余角的性质证得∠AFB=∠BED是解题的关键.21、 (1)、26%;50;(2)、公交车;(3)、300名.【解析】试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.试题解析:(1)、1﹣14%﹣20%﹣40%=26%; 20÷40%=50;骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:1500×20%=300(名).答:该校骑自行车上学的学生有300名.考点:统计图22、(1)50人;(2)补图见解析;(3). 【解析】分析:(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.详解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下: 化学生物政治历史地理化学 生物、化学政治、化学历史、化学地理、化学生物化学、生物 政治、生物历史、生物地理、生物政治化学、政治生物、政治 历史、政治地理、政治历史化学、历史生物、历史政治、历史 地理、历史地理化学、地理生物、地理政治、地理历史、地理 由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,所以该同学恰好选中化学、历史两科的概率为.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.23、(1)弦AB长度的最大值为4,最小值为2;(2)面积最大值为(2500+2400)平方米,周长最大值为340米.【解析】
(1)当AB是过P点的直径时,AB最长;当AB⊥OP时,AB最短,分别求出即可.(2)如图在△ABC的一侧以AC为边做等边三角形AEC,再做△AEC的外接圆,则满足∠ADC=60°的点D在优弧AEC上(点D不与A、C重合),当D与E重合时,S△ADC最大值=S△AEC,由S△ABC为定值,故此时四边形ABCD的面积最大,再根据勾股定理和等边三角形的性质求出此时的面积与周长即可.【详解】(1)(1)当AB是过P点的直径时,AB最长=2×2=4;当AB⊥OP时,AB最短, AP=∴AB=2(2)如图,在△ABC的一侧以AC为边做等边三角形AEC,再做△AEC的外接圆,当D与E重合时,S△ADC最大故此时四边形ABCD的面积最大,∵∠ABC=90°,AB=80,BC=60∴AC=∴周长为AB+BC+CD+AE=80+60+100+100=340(米)S△ADC=S△ABC=∴四边形ABCD面积最大值为(2500+2400)平方米.【点睛】此题主要考查圆的综合利用,解题的关键是熟知圆的性质定理与垂径定理.24、(1);(2);(3)或.【解析】
(1)根据图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),可利用待定系数法求出二次函数解析式;
(2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6,得出AC,BC的长,得出B点的坐标,即可利用待定系数法求出一次函数解析式;
(3)利用三角形相似求出△ABC∽△PBF,即可求出圆的半径,即可得出P点的坐标.【详解】(1)抛物线的图象经过,,,把,,代入得:解得:,抛物线解析式为;(2)抛物线改写成顶点式为,抛物线对称轴为直线,∴对称轴与轴的交点C的坐标为,,设点B的坐标为,,则,,∴∴点B的坐标为,设直线解析式为:,把,代入得:,解得:,直线解析式为:.(3)①∵当点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,
设⊙P与AB相切于点F,与x轴相切于点C,如图1;
∴PF⊥AB,AF=AC,PF=PC,
∵AC=1+2=3,BC=4,
∴AB==5,AF=3,
∴BF=2,
∵∠FBP=∠CBA,
∠BFP=∠BCA=90,
∴△ABC∽△PBF,∴,∴,解得:,∴点P的坐标为(2,);②设⊙P与AB相切于点F,与轴相切于点C,如图2:∴PF⊥AB,PF=PC,
∵AC=3,BC=4, AB=5,∵∠FBP=∠CBA,
∠BFP=∠BCA=90,
∴△ABC∽△PBF,∴,∴,解得:,∴点P的坐标为(2,-6),综上所述,与直线和都相切时,或.【点睛】本题考查了二次函数综合题,涉及到用待定系数法求一函数的解析式、二次函数的解析式及相似三角形的判定和性质、切线的判定和性质,根据题意画出图形,利用数形结合求解是解答此题的关键.25、(1)30;;(2).【解析】试题分析:(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,记小红和小花抽在相邻两道这个事件为A,∴.考点:列表法与树状图法;扇形统计图;利用频率估计概率.26、 (1)作图见解析;(2)7,7.5,2.8;(3)见解析.【解析】
(1)根据图1找出8、9、10℃的天数,然后补全统计图即可;(2)根据众数的定义,找出出现频率最高的温度;按照从低到高排列,求出第5、6两个温度的平均数即为中位数;先求出平均数,再根据方差的定义列式进行计算即可得解;(3)求出7、8、9、10、11℃的天数在扇形统计图中所占的度数,然后作出扇形统计图即可.【详解】(1)由图1可知,8℃有2天,9℃有0天,10℃有2天,补全统计图如图;(2)根据条形统计图,7℃出现的频率最高,为3天,所以,众数是7;按照温度从小到大的顺序排列,第5个温度为7℃,第6个温度为8℃,所以,中位数为(7+8)=7.5;平均数为(6×2+7×3+8×2+10×2+11)=×80=8,所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],=(8+3+0+8+9),=×28,=2.8;(3)6℃的度数,×360°=72°,7℃的度数,×360°=108°,8℃的度数,×360°=72°,10℃的度数,×360°=72°,11℃的度数,×360°=36°,作出扇形统计图如图所示.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.27、(1)a=3,b=-2;(2) m≥8或m≤-2【解析】
(1)把A点坐标代入反比例解析式确定出a的值,确定出A坐标,代入一次函数解析式求出b的值;(2)分别求出直线l1与x轴交于点D,再求出直线l2与x轴交于点B,从而得出直线l2与直线l1交于点C坐标,分两种情况进行讨论:①当S△ABC=S△BCD+S△ABD=6时,利用三角形的面积求出m的值,②当S△ABC=S△BCD−S△ABD=6时,利用三角形的面积求出m的值,从而得出m的取值范围.【详解】(1)∵点A在图象上∴∴a=3∴A(3,1)∵点A在y=x+b图象上∴1=3+b∴b=-2∴解析式y=x-2(2)设直线y=x-2与x轴的交点为D∴D(2,0)①当点C在点A的上方如图(1)∵直线y=-x+m与x轴交点为B∴B(m,0)(m>3)∵直线y=-x+m与直线y=x-2相交于点C∴解得:∴C∵S△ABC=S△BCD-S△ABD≥6∴∴m≥8②若点C在点A下方如图2∵S△ABC=S△BCD+S△ABD≥6∴∴m≤-2综上所述,m≥8或m≤-2【点睛】此题考查了一次函数与反比例函数的交点问题,三角形的面积,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.
相关试卷
这是一份云南弥勒市2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了答题时请按要求用笔,下列运算正确的是,下列计算正确的是,已知等内容,欢迎下载使用。
这是一份河南聚焦2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共27页。试卷主要包含了考生要认真填写考场号和座位序号,计算的值为等内容,欢迎下载使用。
这是一份河北保定竞秀区2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了已知二次函数y=,已知,﹣18的倒数是等内容,欢迎下载使用。