2022年上海市民办张江集团中学初中数学毕业考试模拟冲刺卷含解析
展开
这是一份2022年上海市民办张江集团中学初中数学毕业考试模拟冲刺卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列命题是真命题的是,下列图形不是正方体展开图的是,估计+1的值在等内容,欢迎下载使用。
2021-2022中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是( )A.3 B.3.5 C.4 D.52.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是( )A. B. C. D.3.方程的解为( )A.x=4 B.x=﹣3 C.x=6 D.此方程无解4.下列命题是真命题的是( )A.如果a+b=0,那么a=b=0 B.的平方根是±4C.有公共顶点的两个角是对顶角 D.等腰三角形两底角相等5.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )A. B. C. D.6.如图,在中,,,,将折叠,使点与的中点重合,折痕为,则线段的长为( )A. B. C. D.7.下列图形不是正方体展开图的是( )A. B.C. D.8.估计+1的值在( )A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间9.下列四个图形中,是中心对称图形但不是轴对称图形的是( )A. B. C. D.10.已知反比例函数,下列结论不正确的是( )A.图象经过点(﹣2,1) B.图象在第二、四象限C.当x<0时,y随着x的增大而增大 D.当x>﹣1时,y>2二、填空题(共7小题,每小题3分,满分21分)11.有两个一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中正确的是_____(填写序号).①如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;②如果方程M有两根符号相同,那么方程N的两根符号也相同;③如果方程M和方程N有一个相同的根,那么这个根必是x=1;④如果5是方程M的一个根,那么是方程N的一个根.12.如图所示,D、E之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD和AE上选择了测量点B,C,已知测得AD=100,AE=200,AB=40,AC=20,BC=30,则通过计算可得DE长为_____.13.关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是_____.14.如图△ABC中,AB=AC=8,∠BAC=30°,现将△ABC绕点A逆时针旋转30°得到△ACD,延长AD、BC交于点E,则DE的长是_____.15.因式分解:a3﹣2a2b+ab2=_____.16.如图,⊙O在△ABC三边上截得的弦长相等,∠A=70°,则∠BOC=_____度.17.双曲线、在第一象限的图像如图,过y2上的任意一点A,作x轴的平行线交y1于B,交y轴于C,过A作x轴的垂线交y1于D,交x轴于E,连结BD、CE,则= .三、解答题(共7小题,满分69分)18.(10分)(1)计算:()﹣1+﹣(π﹣2018)0﹣4cos30°(2)解不等式组:,并把它的解集在数轴上表示出来.19.(5分)如图,一次函数y=kx+b的图象与二次函数y=﹣x2+c的图象相交于A(﹣1,2),B(2,n)两点.(1)求一次函数和二次函数的解析式;(2)根据图象直接写出使二次函数的值大于一次函数的值的x的取值范围;(3)设二次函数y=﹣x2+c的图象与y轴相交于点C,连接AC,BC,求△ABC的面积.20.(8分)如图平行四边形ABCD中,对角线AC,BD交于点O,EF过点O,并与AD,BC分别交于点E,F,已知AE=3,BF=5(1)求BC的长;(2)如果两条对角线长的和是20,求三角形△AOD的周长.21.(10分)如图,在Rt△ABC中,,CD⊥AB于点D,BE⊥AB于点B,BE=CD,连接CE,DE.(1)求证:四边形CDBE为矩形;(2)若AC=2,,求DE的长.22.(10分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)调查了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.23.(12分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级(2)班参加球类活动人数情况统计表项目篮球足球乒乓球排球羽毛球人数a6576八年级(2)班学生参加球类活动人数情况扇形统计图根据图中提供的信息,解答下列问题:a= ,b= .该校八年级学生共有600人,则该年级参加足球活动的人数约 人;该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.24.(14分)如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.
参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案.【详解】解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得AP≥AB,AP≥3.5,故选:A.【点睛】本题考查垂线段最短的性质,解题关键是利用垂线段的性质.2、D【解析】
根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【详解】cosα=.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.3、C【解析】
先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验.【详解】方程两边同时乘以x-2得到1-(x-2)=﹣3,解得x=6.将x=6代入x-2得6-2=4,∴x=6就是原方程的解.故选C【点睛】本题考查的是解分式方程,熟知解分式方程的基本步骤是解答此题的关键.4、D【解析】
解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;B、=4的平方根是±2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D.5、B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是.故选B.考点:概率.6、C【解析】
设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.【详解】设,则.由折叠的性质,得.因为点是的中点,所以.在中,由勾股定理,得,即,解得,故线段的长为4.故选C.【点睛】此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键.7、B【解析】
由平面图形的折叠及正方体的展开图解题.【详解】A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体.故选B.【点睛】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.8、B【解析】分析:直接利用2<<3,进而得出答案.详解:∵2<<3,∴3<+1<4,故选B.点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.9、D【解析】
根据轴对称图形与中心对称图形的概念判断即可.【详解】A、是轴对称图形,不是中心对称图形; B、是轴对称图形,不是中心对称图形; C、是轴对称图形,不是中心对称图形; D、不是轴对称图形,是中心对称图形. 故选D.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、D【解析】
A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;
B选项:因为-2<0,图象在第二、四象限,故本选项正确;
C选项:当x<0,且k<0,y随x的增大而增大,故本选项正确;
D选项:当x>0时,y<0,故本选项错误.
故选D. 二、填空题(共7小题,每小题3分,满分21分)11、①②④【解析】试题解析:①在方程ax2+bx+c=0中△=b2-4ac,在方程cx2+bx+a=0中△=b2-4ac,
∴如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;
②∵和符号相同,和符号也相同,
∴如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;
③、M-N得:(a-c)x2+c-a=0,即(a-c)x2=a-c,
∵a≠c,
∴x2=1,解得:x=±1,错误;④∵5是方程M的一个根,
∴25a+5b+c=0,
∴a+b+c=0,
∴是方程N的一个根,正确.
故正确的是①②④.12、1.【解析】
先根据相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性质解答即可.【详解】∵ ∴ 又∵∠A=∠A,∴△ABC∽△AED,∴ ∵BC=30,∴DE=1,故答案为1.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.13、k<1【解析】
根据一元二次方程根的判别式结合题意进行分析解答即可.【详解】∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,∴△=,解得:.故答案为:.【点睛】熟知“在一元二次方程中,若方程有两个不相等的实数根,则△=”是解答本题的关键.14、 【解析】
过点作于,根据三角形的性质及三角形内角和定理可计算再由旋转可得,,根据三角形外角和性质计算,根据含角的直角三角形的三边关系得和的长度,进而得到的长度,然后利用得到与的长度,于是可得.【详解】如图,过点作于, ∵,∴.∵将绕点逆时针旋转,使点落在点处,此时点落在点处,∴ ∵∴在中,∵∴ ∴,在中,∵,∴,∴.故答案为.【点睛】本题考查三角形性质的综合应用,要熟练掌握等腰三角形的性质,含角的直角三角形的三边关系,旋转图形的性质.15、a(a﹣b)1.【解析】【分析】先提公因式a,然后再利用完全平方公式进行分解即可.【详解】原式=a(a1﹣1ab+b1)=a(a﹣b)1,故答案为a(a﹣b)1.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16、125【解析】
解:过O作OM⊥AB,ON⊥AC,OP⊥BC,垂足分别为M,N,P∵∠A=70°,∠B+∠C=180∘−∠A=110°∵O在△ABC三边上截得的弦长相等,∴OM=ON=OP,∴O是∠B,∠C平分线的交点∴∠BOC=180°−12(∠B+∠C)=180°−12×110°=125°. 故答案为:125°【点睛】本题考查了圆心角、弧、弦的关系, 三角形内角和定理, 角平分线的性质,解题的关键是掌握它们的性质和定理.17、【解析】
设A点的横坐标为a,把x=a代入得,则点A的坐标为(a,).∵AC⊥y轴,AE⊥x轴,∴C点坐标为(0,),B点的纵坐标为,E点坐标为(a,0),D点的横坐标为a.∵B点、D点在上,∴当y=时,x=;当x=a,y=.∴B点坐标为(,),D点坐标为(a,).∴AB=a-=,AC=a,AD=-=,AE=.∴AB=AC,AD=AE.又∵∠BAD=∠CAD,∴△BAD∽△CAD.∴. 三、解答题(共7小题,满分69分)18、 (1)-3;(2).【解析】分析:(1)代入30°角的余弦函数值,结合零指数幂、负整数指数幂的意义及二次根式的相关运算法则计算即可;(2)按照解一元一次不等式组的一般步骤解答,并把解集规范的表示到数轴上即可.(1)原式= == -3.(2) 解不等式①得: ,解不等式②得:,∴不等式组的解集为:不等式组的解集在数轴上表示:点睛:熟记零指数幂的意义:,(,为正整数)即30°角的余弦函数值是本题解题的关键.19、(1)y=﹣x+1;(2)﹣1<x<2;(3)3;【解析】
(1)根据待定系数法求一次函数和二次函数的解析式即可.(2)根据图象以及点A,B两点的坐标即可求出使二次函数的值大于一次函数的值的x的取值范围;(3)连接AC、BC,设直线AB交y轴于点D,根据即可求出△ABC的面积.【详解】(1)把A(﹣1,2)代入y=﹣x2+c得:﹣1+c=2,解得:c=3,∴y=﹣x2+3,把B(2,n)代入y=﹣x2+3得:n=﹣1,∴B(2,﹣1),把A(﹣1,2)、B(2,﹣1)分别代入y=kx+b得 解得: ∴y=﹣x+1;(2)根据图象得:使二次函数的值大于一次函数的值的x的取值范围是﹣1<x<2;(3)连接AC、BC,设直线AB交y轴于点D,把x=0代入y=﹣x2+3得:y=3,∴C(0,3),把x=0代入y=﹣x+1得:y=1,∴D(0,1),∴CD=3﹣1=2,则【点睛】考查待定系数法求二次函数解析式,三角形的面积公式等,掌握待定系数法是解题的关键.20、 (1)8;(2)1.【解析】
(1)由平行四边形的性质和已知条件易证△AOE≌△COF,所以可得AE=CF=3,进而可求出BC的长;(2)由平行四边形的性质:对角线互相平分可求出AO+OD的长,进而可求出三角形△AOD的周长.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,AO=CO,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF,∴AE=CF=3,∴BC=BF+CF=5+3=8;(2)∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,AD=BC=8,∵AC+BD=20,∴AO+BO=10,∴△AOD的周长=AO+BO+AD=1.【点睛】本题考查了平行四边形的性质和全等三角形的判定以及全等三角形的性质,能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.21、 (1)见解析;(2)1【解析】
分析:(1)根据平行四边形的判定与矩形的判定证明即可;(2)根据矩形的性质和三角函数解答即可.详解:(1)证明:∵ CD⊥AB于点D,BE⊥AB于点B,∴ .∴ CD∥BE.又∵ BE=CD,∴ 四边形CDBE为平行四边形. 又∵,∴ 四边形CDBE为矩形. (2)解:∵ 四边形CDBE为矩形,∴ DE=BC. ∵ 在Rt△ABC中,,CD⊥AB,可得 .∵ ,∴ .∵ 在Rt△ABC中,,AC=2,,∴ .∴ DE=BC=1.点睛:本题考查了矩形的判定与性质,关键是根据平行四边形的判定与矩形的判定解答.22、50 见解析(3)115.2° (4) 【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.23、 (1)a=16,b=17.5(2)90(3) 【解析】试题分析:(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解.试题解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案为90;(3)如图,∵共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,∴则P(恰好选到一男一女)==.考点:列表法与树状图法;用样本估计总体;扇形统计图.24、(1)见解析(2)当AF=时,四边形BCEF是菱形.【解析】
(1)由AB=DE,∠A=∠D,AF=DC,根据SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形.(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值.【详解】(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.∴四边形BCEF是平行四边形.(2)解:连接BE,交CF与点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形.∵∠ABC=90°,AB=4,BC=3,∴AC=.∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC.∴,即.∴.∵FG=CG,∴FC=2CG=,∴AF=AC﹣FC=5﹣.∴当AF=时,四边形BCEF是菱形.
相关试卷
这是一份2023-2024学年上海市民办张江集团中学数学八上期末学业水平测试试题含答案,共6页。试卷主要包含了下列命题为真命题的是等内容,欢迎下载使用。
这是一份2022年上海市浦东新区部分校初中数学毕业考试模拟冲刺卷含解析,共23页。
这是一份2021-2022学年上海市上海民办张江集团校中考数学考前最后一卷含解析,共19页。试卷主要包含了答题时请按要求用笔,关于二次函数,下列说法正确的是,下列运算正确的是,下列各式正确的是,如果,则a的取值范围是等内容,欢迎下载使用。