2022年上海市浦东新区部分校初中数学毕业考试模拟冲刺卷含解析
展开
这是一份2022年上海市浦东新区部分校初中数学毕业考试模拟冲刺卷含解析,共23页。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( )
A.42° B.28° C.21° D.20°
2.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )
A.73 B.81 C.91 D.109
3.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是( )
A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
4.如图所示,如果将一副三角板按如图方式叠放,那么 ∠1 等于( )
A. B. C. D.
5.已知反比例函数y=的图象在一、三象限,那么直线y=kx﹣k不经过第( )象限.
A.一 B.二 C.三 D.四
6.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于( )
A.12.5° B.15° C.20° D.22.5°
7.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和 的长分别为( )
A.2, B.2 ,π C., D.2,
8.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是( )
A.40° B.50° C.60° D.140°
9.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )
A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×104
10.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是( )
A.135° B.120° C.60° D.45°
11.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x,则去年二月份之前房价为( )
A.(1+40%)×30%x B.(1+40%)(1﹣30%)x
C. D.
12.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )
A.13 B.14 C.15 D.16
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[1.3]=1,(1.3)=3,[1.3)=1.则下列说法正确的是________.(写出所有正确说法的序号)
①当x=1.7时,[x]+(x)+[x)=6;
②当x=﹣1.1时,[x]+(x)+[x)=﹣7;
③方程4[x]+3(x)+[x)=11的解为1<x<1.5;
④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.
14.如果,那么=_____.
15.计算的结果是_____
16.已知圆锥的高为3,底面圆的直径为8,则圆锥的侧面积为_____.
17.甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是__km/h.
18.如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是__________cm.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.
20.(6分)如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.
(1)试判断∠CBD与∠CEB是否相等,并证明你的结论;
(2)求证:
(3)若BC=AB,求tan∠CDF的值.
21.(6分)如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D.
如果BE=15,CE=9,求EF的长;证明:①△CDF∽△BAF;②CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.
22.(8分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:
商品名称
甲
乙
进价(元/件)
40
90
售价(元/件)
60
120
设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.写出y关于x的函数关系式;该商场计划最多投入8000元用于购买这两种商品,
①至少要购进多少件甲商品?
②若销售完这些商品,则商场可获得的最大利润是多少元?
23.(8分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为米.
若苗圃园的面积为72平方米,求;若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
24.(10分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD是⊙O的切线;
(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.
25.(10分)解不等式组:,并把解集在数轴上表示出来。
26.(12分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
求证:AB=DC;试判断△OEF的形状,并说明理由.
27.(12分)一天,小华和小夏玩掷骰子游戏,他们约定:他们用同一枚质地均匀的骰子各掷一次, 如果两次掷的骰子的点数相同则小华获胜:如果两次掷的骰子的点数的和是6则小夏获胜.
(1)请您列表或画树状图列举出所有可能出现的结果;
(2)请你判断这个游戏对他们是否公平并说明理由.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
利用OB=DE,OB=OD得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.
【详解】
解:连结OD,如图,
∵OB=DE,OB=OD,
∴DO=DE,
∴∠E=∠DOE,
∵∠1=∠DOE+∠E,
∴∠1=2∠E,
而OC=OD,
∴∠C=∠1,
∴∠C=2∠E,
∴∠AOC=∠C+∠E=3∠E,
∴∠E=∠AOC=×84°=28°.
故选:B.
【点睛】
本题考查了圆的认识:掌握与圆有关的概念( 弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.
2、C
【解析】
试题解析:第①个图形中一共有3个菱形,3=12+2;
第②个图形中共有7个菱形,7=22+3;
第③个图形中共有13个菱形,13=32+4;
…,
第n个图形中菱形的个数为:n2+n+1;
第⑨个图形中菱形的个数92+9+1=1.
故选C.
考点:图形的变化规律.
3、D
【解析】
①首先利用已知条件根据边角边可以证明△APD≌△AEB;
②由①可得∠BEP=90°,故BE不垂直于AE过点B作BF⊥AE延长线于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直线AE距离为BF=,故②是错误的;
③利用全等三角形的性质和对顶角相等即可判定③说法正确;
④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知条件计算即可判定;
⑤连接BD,根据三角形的面积公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.
【详解】
由边角边定理易知△APD≌△AEB,故①正确;
由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,
所以∠BEP=90°,
过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离,
在△AEP中,由勾股定理得PE=,
在△BEP中,PB= ,PE=,由勾股定理得:BE=,
∵∠PAE=∠PEB=∠EFB=90°,AE=AP,
∴∠AEP=45°,
∴∠BEF=180°-45°-90°=45°,
∴∠EBF=45°,
∴EF=BF,
在△EFB中,由勾股定理得:EF=BF=,
故②是错误的;
因为△APD≌△AEB,所以∠ADP=∠ABE,而对顶角相等,所以③是正确的;
由△APD≌△AEB,
∴PD=BE=,
可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是错误的;
连接BD,则S△BPD=PD×BE= ,
所以S△ABD=S△APD+S△APB+S△BPD=2+,
所以S正方形ABCD=2S△ABD=4+ .
综上可知,正确的有①③⑤.
故选D.
【点睛】
考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.
4、B
【解析】
解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B.
点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.
5、B
【解析】
根据反比例函数的性质得k>0,然后根据一次函数的进行判断直线y=kx-k不经过的象限.
【详解】
∵反比例函数y=的图象在一、三象限,
∴k>0,
∴直线y=kx﹣k经过第一、三、四象限,即不经过第二象限.
故选:B.
【点睛】
考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数与一次函数的性质.
6、B
【解析】
解:连接OB,
∵四边形ABCO是平行四边形,
∴OC=AB,又OA=OB=OC,
∴OA=OB=AB,
∴△AOB为等边三角形,
∵OF⊥OC,OC∥AB,
∴OF⊥AB,
∴∠BOF=∠AOF=30°,
由圆周角定理得∠BAF=∠BOF=15°
故选:B
7、D
【解析】
试题分析:连接OB,
∵OB=4,
∴BM=2,
∴OM=2,,
故选D.
考点:1正多边形和圆;2.弧长的计算.
8、A
【解析】
试题分析:根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.
解:∵DB⊥BC,∠2=50°,
∴∠3=90°﹣∠2=90°﹣50°=40°,
∵AB∥CD,
∴∠1=∠3=40°.
故选A.
9、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:10700=1.07×104,
故选:D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、B
【解析】
易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.
【详解】
∵四边形ABCD是正方形,
∴AB=AD,∠BAF=∠DAF,
∴△ABF≌△ADF,
∴∠AFD=∠AFB,
∵CB=CE,
∴∠CBE=∠CEB,
∵∠BCE=∠BCD+∠DCE=90°+60°=150°,
∴∠CBE=15°,
∵∠ACB=45°,
∴∠AFB=∠ACB+∠CBE=60°.
∴∠AFE=120°.
故选B.
【点睛】
此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.
11、D
【解析】
根据题意可以用相应的代数式表示出去年二月份之前房价,本题得以解决.
【详解】
由题意可得,
去年二月份之前房价为:x÷(1﹣30%)÷(1+40%)=,
故选:D.
【点睛】
本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.
12、C
【解析】
解:如图所示,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、I.
因为六边形ABCDEF的六个角都是120°,
所以六边形ABCDEF的每一个外角的度数都是60°.
所以都是等边三角形.
所以
所以六边形的周长为3+1+4+2+2+3=15;
故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、②③
【解析】
试题解析:①当x=1.7时,
[x]+(x)+[x)
=[1.7]+(1.7)+[1.7)=1+1+1=5,故①错误;
②当x=﹣1.1时,
[x]+(x)+[x)
=[﹣1.1]+(﹣1.1)+[﹣1.1)
=(﹣3)+(﹣1)+(﹣1)=﹣7,故②正确;
③当1<x<1.5时,
4[x]+3(x)+[x)
=4×1+3×1+1
=4+6+1
=11,故③正确;
④∵﹣1<x<1时,
∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,
当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,
当x=0时,y=[x]+(x)+x=0+0+0=0,
当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,
当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,
∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,
∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,
故答案为②③.
考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组.
14、
【解析】
试题解析:
设a=2t,b=3t,
故答案为:
15、
【解析】
【分析】根据二次根式的运算法则进行计算即可求出答案.
【详解】
=
=,
故答案为.
【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.
16、20π
【解析】
利用勾股定理可求得圆锥的母线长,然后根据圆锥的侧面积公式进行计算即可.
【详解】
底面直径为8,底面半径=4,底面周长=8π,
由勾股定理得,母线长==5,
故圆锥的侧面积=×8π×5=20π,
故答案为:20π.
【点睛】
本题主要考查了圆锥的侧面积的计算方法.解题的关键是熟记圆锥的侧面展开扇形的面积计算方法.
17、3.6
【解析】
分析:根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题.
详解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.
设乙的速度为xkm/h
4.5×6+2.5x=36
解得x=3.6
故答案为3.6
点睛:本题为一次函数实际应用问题,考查一次函数图象在实际背景下所代表的意义.解答这类问题时,也可以通过构造方程解决问题.
18、
【解析】
连接OA,作OM⊥AB于点M,
∵正六边形ABCDEF的外接圆半径为2cm
∴正六边形的半径为2 cm, 即OA=2cm
在正六边形ABCDEF中,∠AOM=30°,
∴正六边形的边心距是OM= cos30°×OA=(cm)
故答案为.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2).
【解析】
(1)直接根据概率公式求解;
(2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率.
【详解】
(1)正数为2,所以该球上标记的数字为正数的概率为;
(2)画树状图为:
共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x,y)位于第二象限的概率==.
【点睛】
本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
20、(1)∠CBD与∠CEB相等,证明见解析;(2)证明见解析;(3)tan∠CDF=.
【解析】
试题分析:
(1)由AB是⊙O的直径,BC切⊙O于点B,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,从而可得∠A=∠CBD,结合∠A=∠CEB即可得到∠CBD=∠CEB;
(2)由∠C=∠C,∠CEB=∠CBD,可得∠EBC=∠BDC,从而可得△EBC∽△BDC,再由相似三角形的性质即可得到结论;
(3)设AB=2x,结合BC=AB,AB是直径,可得BC=3x,OB=OD=x,再结合∠ABC=90°,
可得OC=x,CD=(-1)x;由AO=DO,可得∠CDF=∠A=∠DBF,从而可得△DCF∽△BCD,由此可得:==,这样即可得到tan∠CDF=tan∠DBF==.
试题解析:
(1)∠CBD与∠CEB相等,理由如下:
∵BC切⊙O于点B,
∴∠CBD=∠BAD,
∵∠BAD=∠CEB,
∴∠CEB=∠CBD,
(2)∵∠C=∠C,∠CEB=∠CBD,
∴∠EBC=∠BDC,
∴△EBC∽△BDC,
∴;
(3)设AB=2x,∵BC=AB,AB是直径,
∴BC=3x,OB=OD=x,
∵∠ABC=90°,
∴OC=x,
∴CD=(-1)x,
∵AO=DO,
∴∠CDF=∠A=∠DBF,
∴△DCF∽△BCD,
∴==,
∵tan∠DBF==,
∴tan∠CDF=.
点睛:解答本题第3问的要点是:(1)通过证∠CDF=∠A=∠DBF,把求tan∠CDF转化为求tan∠DBF=;(2)通过证△DCF∽△BCD,得到.
21、(1) (2)证明见解析(3)F在直径BC下方的圆弧上,且
【解析】
(1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;
(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;
②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得,又由AB=BC,即可证得CD=CE;
(3)由CE=CD,可得BC= CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且.
【详解】
(1)解:∵直线l与以BC为直径的圆O相切于点C.
∴∠BCE=90°,
又∵BC为直径,
∴∠BFC=∠CFE=90°,
∵∠FEC=∠CEB,
∴△CEF∽△BEC,
∴,
∵BE=15,CE=9,
即:,
解得:EF= ;
(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,
∴∠ABF=∠FCD,
同理:∠AFB=∠CFD,
∴△CDF∽△BAF;
②∵△CDF∽△BAF,
∴,
又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,
∴△CEF∽△BCF,
∴,
∴,
又∵AB=BC,
∴CE=CD;
(3)解:∵CE=CD,
∴BC=CD=CE,
在Rt△BCE中,tan∠CBE=,
∴∠CBE=30°,
故 为60°,
∴F在直径BC下方的圆弧上,且.
【点睛】
考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的性质等知识.此题综合性很强,解题的关键是方程思想与数形结合思想的应用.
22、 (Ⅰ);(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.
【解析】
(Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.
【详解】
(Ⅰ)根据题意得:
则y与x的函数关系式为.
(Ⅱ),解得.
∴至少要购进20件甲商品.
,
∵,
∴y随着x的增大而减小
∴当时,有最大值,.
∴若售完这些商品,则商场可获得的最大利润是2800元.
【点睛】
本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.
23、(1)2(2)当x=4时,y最小=88平方米
【解析】
(1)根据题意得方程解即可;
(2)设苗圃园的面积为y,根据题意得到二次函数的解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可.
解: (1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程
x(31-2x)=72,即x2-15x+36=1.
解得x1=3(舍去),x2=2.
(2)依题意,得8≤31-2x≤3.解得6≤x≤4.
面积S=x(31-2x)=-2(x-)2+(6≤x≤4).
①当x=时,S有最大值,S最大=;
②当x=4时,S有最小值,S最小=4×(31-22)=88
“点睛”此题考查了二次函数、一元二次不等式的实际应用问题,解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.
24、(1)证明见解析;(2).
【解析】
试题分析:连接OD.根据圆周角定理得到∠ADO+∠ODB=90°,
而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以证明是切线.
根据已知条件得到由相似三角形的性质得到 求得 由切线的性质得到根据勾股定理列方程即可得到结论.
试题解析:(1)连接OD.
∵OB=OD,
∴∠OBD=∠BDO.
∵∠CDA=∠CBD,
∴∠CDA=∠ODB.
又∵AB是⊙O的直径,∴∠ADB=90°,
∴∠ADO+∠ODB=90°,
∴∠ADO+∠CDA=90°,即∠CDO=90°,
∴OD⊥CD.
∵OD是⊙O的半径,
∴CD是⊙O的切线;
(2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,
BC=6,∴CD=4.
∵CE,BE是⊙O的切线,
∴BE=DE,BE⊥BC,
∴BE2+BC2=EC2,
即BE2+62=(4+BE)2,
解得BE=.
25、,解集在数轴上表示见解析
【解析】
试题分析:先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可.
试题解析:
由①得:
由②得:
∴不等式组的解集为:
解集在数轴上表示为:
26、(1)证明略
(2)等腰三角形,理由略
【解析】
证明:(1)∵BE=CF,
∴BE+EF=CF+EF, 即BF=CE.
又∵∠A=∠D,∠B=∠C,
∴△ABF≌△DCE(AAS),
∴AB=DC.
(2)△OEF为等腰三角形
理由如下:∵△ABF≌△DCE,
∴∠AFB=∠DEC.
∴OE=OF.
∴△OEF为等腰三角形.
27、(1)36(2)不公平
【解析】
(1)根据题意列表即可;
(2)根据根据表格可以求得得分情况,比较其大小,即可得出结论.
【详解】
(1)列表得:
(1,6)
(2,6)
(3,6)
(4,6)
(5,6)
(6,6)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
∴一共有36种等可能的结果,
(2)这个游戏对他们不公平,
理由:由上表可知,所有可能的结果有36种,并且它们出现的可能性相等,
而P(两次掷的骰子的点数相同)
P(两次掷的骰子的点数的和是6)=
∴不公平.
【点睛】
本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等
就公平,否则就不公平.
相关试卷
这是一份江苏省南通市部分校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了二次函数y=ax2+bx﹣2,图为小明和小红两人的解题过程,下列计算中,正确的是等内容,欢迎下载使用。
这是一份河北省廊坊市霸州市部分校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,剪纸是我国传统的民间艺术等内容,欢迎下载使用。
这是一份2022年上海市民办张江集团中学初中数学毕业考试模拟冲刺卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列命题是真命题的是,下列图形不是正方体展开图的是,估计+1的值在等内容,欢迎下载使用。