河北保定竞秀区2021-2022学年初中数学毕业考试模拟冲刺卷含解析
展开这是一份河北保定竞秀区2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了已知二次函数y=,已知,﹣18的倒数是等内容,欢迎下载使用。
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )
A.三棱柱B.四棱柱C.三棱锥D.四棱锥
2.计算(﹣5)﹣(﹣3)的结果等于( )
A.﹣8 B.8 C.﹣2 D.2
3.如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若也在格点上,且∠AED=∠ACD,则∠AEC 度数为 ( )
A.75°B.60°C.45°D.30°
4.近似数精确到( )
A.十分位B.个位C.十位D.百位
5.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )
A.B.C.D.
6.已知二次函数y=(x+a)(x﹣a﹣1),点P(x0,m),点Q(1,n)都在该函数图象上,若m<n,则x0的取值范围是( )
A.0≤x0≤1B.0<x0<1且x0≠
C.x0<0或x0>1D.0<x0<1
7.已知:如图是y=ax2+2x﹣1的图象,那么ax2+2x﹣1=0的根可能是下列哪幅图中抛物线与直线的交点横坐标( )
A.B.
C.D.
8.﹣18的倒数是( )
A.18B.﹣18C.-D.
9.2018 年 1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是 41, 45,41,44,40,42,41,这组数据的中位数、众数分别是( )
A.42,41B.41,42C.41,41D.42,45
10.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为( )
A.3.9×1010B.3.9×109C.0.39×1011D.39×109
11.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是( )
A.方程有两个相等的实数根
B.方程有两个不相等的实数根
C.没有实数根
D.无法确定
12.不等式5+2x <1的解集在数轴上表示正确的是( ).
A.B.C.D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.
14.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则DE=_____.
15.分解因式:4x2﹣36=___________.
16.若是关于的完全平方式,则__________.
17.如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为_____cm.
18.分解因式:_______________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)随着高铁的建设,春运期间动车组发送旅客量越来越大,相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间的铁路发送旅客量情况进行了调查,过程如下.
(Ⅰ)收集、整理数据
请将表格补充完整:
(Ⅱ)描述数据
为了更直观地显示动车组发送旅客量占比的变化趋势,需要用什么图(回答“折线图”或“扇形图”)进行描述;
(Ⅲ)分析数据、做出推测
预估2019年春运期间动车组发送旅客量占比约为多少,说明你的预估理由.
20.(6分)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)
生产量最多的一天比生产量最少的一天多生产多少辆?半年内总生产量是多少?比计划多了还是少了,增加或减少多少?
21.(6分)有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象.图②分别表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)与工作时间t(时)的函数图象.
(1)求甲5时完成的工作量;
(2)求y甲、y乙与t的函数关系式(写出自变量t的取值范围);
(3)求乙提高工作效率后,再工作几个小时与甲完成的工作量相等?
22.(8分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.
(1)甲、乙两种套房每套提升费用各多少万元?
(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?
23.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ;△A2B2C2的面积是 平方单位.
24.(10分)尺规作图:用直尺和圆规作图,不写作法,保留痕迹.
已知:如图,线段a,h.
求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.
25.(10分)如图已知△ABC,点D是AB上一点,连接CD,请用尺规在边AC上求作点P,使得△PBC的面积与△DBC的面积相等(保留作图痕迹,不写做法)
26.(12分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)
27.(12分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米,参考数据:sin 68°≈0.93,cs 68°≈0.37,tan 68°≈2.5,≈1.73)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.
故选D
考点:几何体的形状
2、C
【解析】分析:减去一个数,等于加上这个数的相反数. 依此计算即可求解.
详解:(-5)-(-3)=-1.
故选:C.
点睛:考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号; ②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数).
3、B
【解析】
将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出△CME为等边三角形,进而即可得出∠AEC的值.
【详解】
将圆补充完整,找出点E的位置,如图所示.
∵弧AD所对的圆周角为∠ACD、∠AEC,
∴图中所标点E符合题意.
∵四边形∠CMEN为菱形,且∠CME=60°,
∴△CME为等边三角形,
∴∠AEC=60°.
故选B.
【点睛】
本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键.
4、C
【解析】
根据近似数的精确度:近似数5.0×102精确到十位.
故选C.
考点:近似数和有效数字
5、A
【解析】
根据左视图的概念得出各选项几何体的左视图即可判断.
【详解】
解:A选项几何体的左视图为
;
B选项几何体的左视图为
;
C选项几何体的左视图为
;
D选项几何体的左视图为
;
故选:A.
【点睛】
本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念.
6、D
【解析】
分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答.
详解:二次函数y=(x+a)(x﹣a﹣1),当y=0时,x1=﹣a,x2=a+1,∴对称轴为:x==
当P在对称轴的左侧(含顶点)时,y随x的增大而减小,由m<n,得:0<x0≤;
当P在对称轴的右侧时,y随x的增大而增大,由m<n,得:<x0<1.
综上所述:m<n,所求x0的取值范围0<x0<1.
故选D.
点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏.
7、C
【解析】
由原抛物线与x轴的交点位于y轴的两端,可排除A、D选项;
B、方程ax2+2x﹣1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B不符合题意;
C、抛物线y=ax2与直线y=﹣2x+1的交点,即交点的横坐标为方程ax2+2x﹣1=0的根,C符合题意.此题得解.
【详解】
∵抛物线y=ax2+2x﹣1与x轴的交点位于y轴的两端,
∴A、D选项不符合题意;
B、∵方程ax2+2x﹣1=0有两个不等实根,且负根的绝对值大于正根的绝对值,
∴B选项不符合题意;
C、图中交点的横坐标为方程ax2+2x﹣1=0的根(抛物线y=ax2与直线y=﹣2x+1的交点),
∴C选项符合题意.
故选:C.
【点睛】
本题考查了抛物线与x轴的交点以及二次函数的图象与位置变化,逐一分析四个选项中的图形是解题的关键.
8、C
【解析】
根据乘积为1的两个数互为倒数,可得一个数的倒数.
【详解】
∵-18=1,
∴﹣18的倒数是,
故选C.
【点睛】
本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.
9、C
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
【详解】
从小到大排列此数据为:40,1,1,1,42,44,45, 数据 1 出现了三次最多为众数,1 处在第 4 位为中位数.
所以本题这组数据的中位数是 1,众数是 1.
故选C.
【点睛】
考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
10、A
【解析】
用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.
【详解】
39000000000=3.9×1.
故选A.
【点睛】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
11、B
【解析】
试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.
考点:一元二次方程根的判别式.
12、C
【解析】
先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.
【详解】
5+1x<1,
移项得1x<-4,
系数化为1得x<-1.
故选C.
【点睛】
本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、3
【解析】
试题分析:如图,∵CD∥AB∥MN,
∴△ABE∽△CDE,△ABF∽△MNF,
∴,
即,
解得:AB=3m,
答:路灯的高为3m.
考点:中心投影.
14、.
【解析】
连接OD,OC,AD,由⊙O的直径AB=7可得出OD=OC,故可得出OD=CD=OC,所以∠DOC=60°,∠DAC=30°,根据勾股定理可求出AD的长,在Rt△ADE中,利用∠DAC的正切值求解即可.
【详解】
解:连接OD,OC,AD,
∵半圆O的直径AB=7,
∴OD=OC=,
∵CD=,
∴OD=CD=OC
∴∠DOC=60°,∠DAC=30°
又∵AB=7,BD=5,
∴
在Rt△ADE中,
∵∠DAC=30°,
∴DE=AD•tan30°
故答案为
【点睛】
本题考查了圆周角定理、等边三角形的判定与性质,勾股定理的应用等知识;综合性比较强.
15、4(x+3)(x﹣3)
【解析】
分析:首先提取公因式4,然后再利用平方差公式进行因式分解.
详解:原式=.
点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有提取公因式、公式法和十字相乘法等,如果有公因式首先都要提取公因式.
16、1或-1
【解析】
【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.
详解:∵x2+2(m-3)x+16是关于x的完全平方式,
∴2(m-3)=±8,
解得:m=-1或1,
故答案为-1或1.
点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.
17、2
【解析】
要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.
【详解】
解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.
∵圆柱底面的周长为6cm,圆柱高为2cm,
∴AB=2cm,BC=BC′=3cm,
∴AC2=22+32=13,
∴AC=cm,
∴这圈金属丝的周长最小为2AC=2cm.
故答案为2.
【点睛】
本题考查了平面展开−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.
18、 (x+y)(x-y)
【解析】
直接利用平方差公式因式分解即可,即原式=(x+y)(x-y),故答案为(x+y)(x-y).
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(Ⅰ)见表格;(Ⅱ)折线图;(Ⅲ)60%、之前每年增加的百分比依次为 7%、6%、5%、4%,据此预测 2019 年增加的百分比接近 3%.
【解析】
(Ⅰ)根据百分比的意义解答可得;(Ⅱ)根据折线图和扇形图的特点选择即可得;(Ⅲ)根据之前每年增加的百分比依次为7%、6%、5%、4%,据此预测 2019 年增加的百分比接近3% .
【详解】
(Ⅰ)
(Ⅱ)为了更直观地显示动车组发送旅客量占比的变化趋势,需要用折线图进行描述,
故答案为折线图;
(Ⅲ)预估 2019 年春运期间动车组发送旅客量占比约为 60%,
预估理由是之前每年增加的百分比依次为 7%、6%、5%、4%,据此预测 2019 年增加的百分比接近 3%.
【点睛】
本题考查了统计图的选择,根据统计图的特点正确选择统计图是解题的关键.
20、(1)生产量最多的一天比生产量最少的一天多生产9辆;(2)半年内总生产量是121辆.比计划多了1辆.
【解析】
(1)由表格可知,四月生产最多为:20+4=24;六月最少为:20-5=15,两者相减即可求解;
(2)把每月的生产量加起来即可,然后与计划相比较.
【详解】
(1)+4-(-5)=9(辆)
答:生产量最多的一天比生产量最少的一天多生产9辆.
(2)20×6+[+3+(-2)+(-1)+(+4)+(+2)+(-5)]=120+(+1)=121(辆),
因为121>120 121-120=1(辆)
答:半年内总生产量是121辆.比计划多了1辆.
【点睛】
此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,此题主要考查有理数的加减运算法则.
21、(1)1件;(2)y甲=30t(0≤t≤5);y乙=;(3)小时;
【解析】
(1)根据图①可得出总工作量为370件,根据图②可得出乙完成了220件,从而可得出甲5小时完成的工作量;(2)设y甲的函数解析式为y=kx+b,将点(0,0),(5,1)代入即可得出y甲与t的函数关系式;设y乙的函数解析式为y=mx(0≤t≤2),y=cx+d(2<t≤5),将点的坐标代入即可得出函数解析式;(3)联立y甲与改进后y乙的函数解析式即可得出答案.
【详解】
(1)由图①得,总工作量为370件,由图②可得出乙完成了220件,
故甲5时完成的工作量是1.
(2)设y甲的函数解析式为y=kt(k≠0),把点(5,1)代入可得:k=30
故y甲=30t(0≤t≤5);
乙改进前,甲乙每小时完成50件,所以乙每小时完成20件,
当0≤t≤2时,可得y乙=20t;
当2<t≤5时,设y=ct+d,将点(2,40),(5,220)代入可得:,
解得:,
故y乙=60t﹣80(2<t≤5).
综上可得:y甲=30t(0≤t≤5);y乙=.
(3)由题意得:,
解得:t=,
故改进后﹣2=小时后乙与甲完成的工作量相等.
【点睛】
本题考查了一次函数的应用,解题的关键是能读懂函数图象所表示的信息,另外要熟练掌握待定系数法求函数解析式的知识.
22、(1)甲、乙两种套房每套提升费用为25、1万元;(2)甲种套房提升2套,乙种套房提升30套时,y最小值为2090万元.
【解析】
(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;
(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论.
【详解】
(1)设乙种套房提升费用为x万元,则甲种套房提升费用为(x﹣3)万元,
则,
解得x=1.
经检验:x=1是分式方程的解,
答:甲、乙两种套房每套提升费用为25、1万元;
(2)设甲种套房提升a套,则乙种套房提升(80﹣a)套,
则2090≤25a+1(80﹣a)≤2096,
解得48≤a≤2.
∴共3种方案,分别为:
方案一:甲种套房提升48套,乙种套房提升32套.
方案二:甲种套房提升49套,乙种套房提升31套,
方案三:甲种套房提升2套,乙种套房提升30套.
设提升两种套房所需要的费用为y万元,则
y=25a+1(80﹣a)=﹣3a+2240,
∵k=﹣3,
∴当a取最大值2时,即方案三:甲种套房提升2套,乙种套房提升30套时,y最小值为2090万元.
【点睛】
本题考查了一次函数的性质的运用,列分式方程解实际问题的运用,列一元一次不等式组解实际问题的运用.解答时建立方程求出甲,乙两种套房每套提升费用是关键,是解答第二问的必要过程.
23、(1)(2,﹣2);
(2)(1,0);
(3)1.
【解析】
试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;
(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;
(3)利用等腰直角三角形的性质得出△A2B2C2的面积.
试题解析:(1)如图所示:C1(2,﹣2);
故答案为(2,﹣2);
(2)如图所示:C2(1,0);
故答案为(1,0);
(3)∵=20,=20,=40,
∴△A2B2C2是等腰直角三角形,
∴△A2B2C2的面积是:××=1平方单位.
故答案为1.
考点:1、平移变换;2、位似变换;3、勾股定理的逆定理
24、见解析
【解析】
作∠CAB=∠α,再作∠CAB的平分线,在角平分线上截取AD=h,可得点D,过点D作AD的垂线,从而得出△ABC.
【详解】
解:如图所示,△ABC即为所求.
【点睛】
考查作图-复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键.
25、见解析
【解析】
三角形的面积相等即同底等高,所以以BC为两个三角形的公共底边,在AC边上寻找到与D到BC距离相等的点即可.
【详解】
作∠CDP=∠BCD,PD与AC的交点即P.
【点睛】
本题考查了三角形面积的灵活计算,还可以利用三角形的全等来进行解题.
26、51.96米.
【解析】
先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt△BDC中,,即可求出CD的长.
【详解】
解:∵∠CBD=1°,∠CAB=30°,
∴∠ACB=30°.
∴AB=BC=1.
在Rt△BDC中,
∴(米).
答:文峰塔的高度CD约为51.96米.
【点睛】
本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.
27、工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.
【解析】
解:在Rt△BAE中,∠BAE=680,BE=162米,∴(米).
在Rt△DEC中,∠DGE=600,DE=176.6米,∴(米).
∴(米).
∴工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.
在Rt△BAE和Rt△DEC中,应用正切函数分别求出AE和CE的长即可求得AC的长.
年份
2014
2015
2016
2017
2018
动车组发送旅客量 a 亿人次
0.87
1.14
1.46
1.80
2.17
铁路发送旅客总量 b 亿人次
2.52
2.76
3.07
3.42
3.82
动车组发送旅客量占比× 100
34.5 %
41.3 %
47.6 %
52.6 %
56.8 %
相关试卷
这是一份重庆市大渡口区2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共19页。
这是一份河南聚焦2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共27页。试卷主要包含了考生要认真填写考场号和座位序号,计算的值为等内容,欢迎下载使用。
这是一份2022年河北省保定市冀英校初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列计算错误的是等内容,欢迎下载使用。