福建省漳州市龙海市第二中学2022年中考数学对点突破模拟试卷含解析
展开
这是一份福建省漳州市龙海市第二中学2022年中考数学对点突破模拟试卷含解析,共18页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是( )
A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16
2.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )
A.摸出的三个球中至少有一个球是黑球
B.摸出的三个球中至少有一个球是白球
C.摸出的三个球中至少有两个球是黑球
D.摸出的三个球中至少有两个球是白球
3.计算的结果是( ).
A. B. C. D.
4.如下图所示,该几何体的俯视图是 ( )
A. B. C. D.
5.如图,已知反比函数的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若△ABO的周长为,AD=2,则△ACO的面积为( )
A. B.1 C.2 D.4
6.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )
A. B. C. D.
7.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=( )
A.23° B.46° C.67° D.78°
8.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为( )
A.10cm B.20cm C.10πcm D.20πcm
9.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( )
A.115° B.120° C.130° D.140°
10.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ()
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.小红沿坡比为1:的斜坡上走了100米,则她实际上升了_____米.
12.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.
13.因式分解:2b2a2﹣a3b﹣ab3=_____.
14.计算:=____.
15.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a),如图,若曲线y=(x>0)与此正方形的边有交点,则a的取值范围是_______.
16.如果,那么______.
17.如图,点A、B、C是⊙O上的三点,且△AOB是正三角形,则∠ACB的度数是 。
三、解答题(共7小题,满分69分)
18.(10分)如图,抛物线y=﹣x2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0<m<3),连结DC并延长至E,使得CE=CD,连结BE,BC.
(1)求抛物线的解析式;
(2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;
(3)求△BCE的面积最大值.
19.(5分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
车型
目的地
A村(元/辆)
B村(元/辆)
大货车
800
900
小货车
400
600
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
20.(8分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600米到达B处,测得C在点B的北偏西60°方向上.
(1)MN是否穿过原始森林保护区,为什么?(参考数据:≈1.732)
(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?
21.(10分)将如图所示的牌面数字分别是1,2,3,4 的四张扑克牌背面朝上,洗匀后放在桌面上.
从中随机抽出一张牌,牌面数字是偶数的概率是_____;先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是 4 的倍数的概率.
22.(10分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
23.(12分)中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分
频数
频率
50≤x<60
10
0.05
60≤x<70
30
0.15
70≤x<80
40
n
80≤x<90
m
0.35
90≤x≤100
50
0.25
请根据所给信息,解答下列问题:m= ,n= ;请补全频数分布直方图;若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
24.(14分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)
(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;
(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;
(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
试题解析:由于△ABC是直角三角形,所以当反比例函数经过点A时k最小,进过点C时k最大,据此可得出结论.
∵△ABC是直角三角形,∴当反比例函数经过点A时k最小,经过点C时k最大,
∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.
2、A
【解析】
根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.
【详解】
A、是必然事件;
B、是随机事件,选项错误;
C、是随机事件,选项错误;
D、是随机事件,选项错误.
故选A.
3、D
【解析】
根据同底数幂的乘除法运算进行计算.
【详解】
3x2y2×x3y2÷xy3=6x5y4÷xy3=6x4y.故答案选D.
【点睛】
本题主要考查同底数幂的乘除运算,解题的关键是知道:同底数幂相乘,底数不变,指数相加.
4、B
【解析】
根据俯视图是从上面看到的图形解答即可.
【详解】
从上面看是三个长方形,故B是该几何体的俯视图.
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
5、A
【解析】
在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可.
【详解】
在Rt△AOB中,AD=2,AD为斜边OB的中线,
∴OB=2AD=4,
由周长为4+2
,得到AB+AO=2,
设AB=x,则AO=2-x,
根据勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,
整理得:x2-2x+4=0,
解得x1=+,x2=-,
∴AB=+,OA=-,
过D作DE⊥x轴,交x轴于点E,可得E为AO中点,
∴OE=OA=(-)(假设OA=+,与OA=-,求出结果相同),
在Rt△DEO中,利用勾股定理得:DE==(+)),
∴k=-DE•OE=-(+))×(-))=1.
∴S△AOC=DE•OE=,
故选A.
【点睛】
本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k的几何意义,熟练掌握反比例的图象与性质是解本题关键.
6、C
【解析】
从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,
故选C.
7、B
【解析】
根据圆的半径相等可知AB=AC,由等边对等角求出∠ACB,再由平行得内错角相等,最后由平角180°可求出∠1.
【详解】
根据题意得:AB=AC,
∴∠ACB=∠ABC=67°,
∵直线l1∥l2,
∴∠2=∠ABC=67°,
∵∠1+∠ACB+∠2=180°,
∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46º.
故选B.
【点睛】
本题考查等腰三角形的性质,平行线的性质,熟练根据这些性质得到角之间的关系是关键.
8、A
【解析】
试题解析:扇形的弧长为:=20πcm,
∴圆锥底面半径为20π÷2π=10cm,
故选A.
考点:圆锥的计算.
9、A
【解析】
解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.
10、A
【解析】
从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形.故选A.
二、填空题(共7小题,每小题3分,满分21分)
11、50
【解析】
根据题意设铅直距离为x,则水平距离为,根据勾股定理求出x的值,即可得到结果.
【详解】
解:设铅直距离为x,则水平距离为,
根据题意得:,
解得:(负值舍去),
则她实际上升了50米,
故答案为:50
【点睛】
本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.
12、1
【解析】
根据题意得x1+x2=2,x1x2=﹣1,
所以x1+x2﹣x1x2=2﹣(﹣1)=1.
故答案为1.
13、﹣ab(a﹣b)2
【解析】
首先确定公因式为ab,然后提取公因式整理即可.
【详解】
2b2a2﹣a3b﹣ab3=ab(2ab-a2-b2)=﹣ab(a﹣b)2,所以答案为﹣ab(a﹣b)2.
【点睛】
本题考查了因式分解-提公因式法,解题的关键是掌握提公因式法的概念.
14、1
【解析】
根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可.
【详解】
解:∵12=21,
∴=1,
故答案为:1.
【点睛】
本题考查了算术平方根的定义,先把化简是解题的关键.
15、
【解析】
因为A点的坐标为(a,a),则C(a﹣1,a﹣1),根据题意只要分别求出当A点或C点在曲线上时a的值即可得到答案.
【详解】
解:∵A点的坐标为(a,a),
∴C(a﹣1,a﹣1),
当C在双曲线y=时,则a﹣1=,
解得a=+1;
当A在双曲线y=时,则a=,
解得a=,
∴a的取值范围是≤a≤+1.
故答案为≤a≤+1.
【点睛】
本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于根据题意找到关键点,然后将关键点的坐标代入反比例函数求得确定值即可.
16、;
【解析】
先对等式进行转换,再求解.
【详解】
∵
∴3x=5x-5y
∴2x=5y
∴
【点睛】
本题考查的是分式,熟练掌握分式是解题的关键.
17、30°
【解析】
试题分析:圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.
∵△AOB是正三角形
∴∠AOB=60°
∴∠ACB=30°.
考点:圆周角定理
点评:本题属于基础应用题,只需学生熟练掌握圆周角定理,即可完成.
三、解答题(共7小题,满分69分)
18、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)当m=1.5时,S△BCE有最大值,S△BCE的最大值=.
【解析】
分析:(1) 1)把A、B两点代入抛物线解析式即可;(2)设,利用求线段中点的公式列出关于m的方程组,再利用0<m<1即可求解;(1) 连结BD,过点D作x轴的垂线交BC于点H,由,设出点D的坐标,进而求出点H的坐标,利用三角形的面积公式求出,再利用公式求二次函数的最值即可.
详解:(1)∵抛物线 过点A(1,0)和B(1,0)
(2)∵
∴点C为线段DE中点
设点E(a,b)
∵0<m<1,
∴当m=1时,纵坐标最小值为2
当m=1时,最大值为2
∴点E纵坐标的范围为
(1)连结BD,过点D作x轴的垂线交BC于点H
∵CE=CD
∴H(m,-m+1)
∴
当m=1.5时,
.
点睛:本题考查了二次函数的综合题、待定系数法、一次函数等知识点,解题的关键是灵活运用所学知识解决问题,会用方程的思想解决问题.
19、(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.
【解析】
(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;
(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;
(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
【详解】
(1)设大货车用x辆,小货车用y辆,根据题意得:
解得:.∴大货车用8辆,小货车用7辆.
(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).
(3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,
∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,
最小值为y=100×5+1=9900(元).
答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.
20、(1)不会穿过森林保护区.理由见解析;(2)原计划完成这项工程需要25天.
【解析】
试题分析:(1)要求MN是否穿过原始森林保护区,也就是求C到MN的距离.要构造直角三角形,再解直角三角形;
(2)根据题意列方程求解.
试题解析:(1)如图,过C作CH⊥AB于H,
设CH=x,由已知有∠EAC=45°, ∠FBC=60°
则∠CAH=45°, ∠CBA=30°,在RT△ACH中,AH=CH=x,在RT△HBC中, tan∠HBC=
∴HB===x,
∵AH+HB=AB
∴x+x=600解得x≈220(米)>200(米).∴MN不会穿过森林保护区.
(2)设原计划完成这项工程需要y天,则实际完成工程需要y-5
根据题意得:=(1+25%)×,解得:y=25知:y=25的根.
答:原计划完成这项工程需要25天.
21、 (1);(2).
【解析】
(1)直接利用概率公式求解即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.
【详解】
(1) 从中随机抽出一张牌,牌面所有可能出现的结果有4种,且它们出现的可能性相等,其中出现偶数的情况有2种,
∴P(牌面是偶数)==;
故答案为:;
(2)根据题意,画树状图:
可知,共有种等可能的结果,其中恰好是的倍数的共有种,
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
22、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.
【解析】
【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;
(2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.
【详解】(1)设第一批饮料进货单价为元,则:
解得:
经检验:是分式方程的解
答:第一批饮料进货单价为8元.
(2)设销售单价为元,则:
,
化简得:,
解得:,
答:销售单价至少为11元.
【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.
23、(1)70,0.2(2)70(3)750
【解析】
(1)根据题意和统计表中的数据可以求得m、n的值;
(2)根据(1)中求得的m的值,从而可以将条形统计图补充完整;
(3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人.
【详解】
解:(1)由题意可得,
m=200×0.35=70,n=40÷200=0.2,
故答案为70,0.2;
(2)由(1)知,m=70,
补全的频数分布直方图,如下图所示;
(3)由题意可得,
该校参加这次比赛的3000名学生中成绩“优”等约有:3000×0.25=750(人),
答:该校参加这次比赛的3000名学生中成绩“优”等约有750人.
【点睛】
本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
24、(1)详见解析;(2)详见解析;(3)图见解析,点P坐标为(2,0).
【解析】
(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;
(2))找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;
(3)找出A的对称点A′,连接BA′,与x轴交点即为P.
【详解】
(1)如图1所示,△A1B1C1,即为所求:
(2)如图2所示,△A2B2C2,即为所求:
(3)找出A的对称点A′(1,﹣1),
连接BA′,与x轴交点即为P;
如图3所示,点P即为所求,点P坐标为(2,0).
【点睛】
本题考查作图-旋转变换,平移变换,轴对称最短问题等知识,得出对应点位置是解题关键.
相关试卷
这是一份2022年福建省漳州市龙海市市级名校中考数学五模试卷含解析,共22页。试卷主要包含了最小的正整数是,函数y=mx2+等内容,欢迎下载使用。
这是一份2022届福建省福州市第二中学中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了的一个有理化因式是,下列调查中,最适合采用全面调查,如图,A(4,0),B,下列运算正确的是等内容,欢迎下载使用。
这是一份2022届福建省华安中学中考数学对点突破模拟试卷含解析,共17页。试卷主要包含了-2的绝对值是,在直角坐标系中,已知点P,定义,点M等内容,欢迎下载使用。