福建省厦门五中学2022年中考数学对点突破模拟试卷含解析
展开
这是一份福建省厦门五中学2022年中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了直线y=3x+1不经过的象限是,图为小明和小红两人的解题过程等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为( )
A.35° B.45° C.55° D.65°
2.如图,平行四边形ABCD的顶点A、B、D在⊙O上,顶点C在⊙O直径BE上,连结AE,若∠E=36°,则∠ADC的度数是( )
A.44° B.53° C.72° D.54°
3.下列等式正确的是( )
A.x3﹣x2=x B.a3÷a3=a
C. D.(﹣7)4÷(﹣7)2=﹣72
4.某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是( )
成绩(分)
30
29
28
26
18
人数(人)
32
4
2
1
1
A.该班共有40名学生
B.该班学生这次考试成绩的平均数为29.4分
C.该班学生这次考试成绩的众数为30分
D.该班学生这次考试成绩的中位数为28分
5.直线y=3x+1不经过的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且AB⊥CD.入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )
A.A→O→D B.C→A→O→ B C.D→O→C D.O→D→B→C
7.图为小明和小红两人的解题过程.下列叙述正确的是( )
计算:+
A.只有小明的正确 B.只有小红的正确
C.小明、小红都正确 D.小明、小红都不正确
8.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
A. B. C. D.
9.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是( )
A.t< B.t> C.t≤ D.t≥
10.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )
A.8 B.6 C.4 D.2
二、填空题(共7小题,每小题3分,满分21分)
11.计算:a3÷(﹣a)2=_____.
12.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=_____.
13.一次函数y=(k﹣3)x﹣k+2的图象经过第一、三、四象限.则k的取值范围是_____.
14.已知二次函数的图象开口向上,且经过原点,试写出一个符合上述条件的二次函数的解析式:_____.(只需写出一个)
15.一次函数与的图象如图,则的解集是__.
16.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=_____度.
17.如图,AE是正八边形ABCDEFGH的一条对角线,则∠BAE= °.
三、解答题(共7小题,满分69分)
18.(10分)台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p= t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:
(1)求日销售量y与时间t的函数关系式?
(2)哪一天的日销售利润最大?最大利润是多少?
(3)该养殖户有多少天日销售利润不低于2400元?
19.(5分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.
证明:S矩形ABCD=S1+S2+S3=2,S4= ,S5= ,S6= + ,S阴影=S1+S6=S1+S2+S3= .
20.(8分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:
月份(x)
1月
2月
3月
4月
5月
6月
销售量(p)
3.9万台
4.0万台
4.1万台
4.2万台
4.3万台
4.4万台
(1)求p关于x的函数关系式;
(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?
(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.
21.(10分)解不等式:3x﹣1>2(x﹣1),并把它的解集在数轴上表示出来.
22.(10分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.
(1)求证:直线CE是⊙O的切线.
(2)若BC=3,CD=3,求弦AD的长.
23.(12分)新定义:如图1(图2,图3),在△ABC中,把AB边绕点A顺时针旋转,把AC边绕点A逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC是△AB′C′的“旋补三角形”,△AB'C′的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”
(特例感知)(1)①若△ABC是等边三角形(如图2),BC=1,则AD= ;
②若∠BAC=90°(如图3),BC=6,AD= ;
(猜想论证)(2)在图1中,当△ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;
(拓展应用)(3)如图1.点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且△APD是△BPC的“旋补三角形”,点P是“旋补中心”,请确定点P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长.
24.(14分)已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.
(1)①如图2,求出抛物线的“完美三角形”斜边AB的长;
②抛物线与的“完美三角形”的斜边长的数量关系是 ;
(2)若抛物线的“完美三角形”的斜边长为4,求a的值;
(3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.
详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,
∴∠B=∠ADC=35°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CAB=90°-∠B=55°,
故选C.
点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.
2、D
【解析】
根据直径所对的圆周角为直角可得∠BAE=90°,再根据直角三角形的性质和平行四边形的性质可得解.
【详解】
根据直径所对的圆周角为直角可得∠BAE=90°,
根据∠E=36°可得∠B=54°,
根据平行四边形的性质可得∠ADC=∠B=54°.
故选D
【点睛】
本题考查了平行四边形的性质、圆的基本性质.
3、C
【解析】
直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案.
【详解】
解:A、x3-x2,无法计算,故此选项错误;
B、a3÷a3=1,故此选项错误;
C、(-2)2÷(-2)3=-,正确;
D、(-7)4÷(-7)2=72,故此选项错误;
故选C.
【点睛】
此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键.
4、D
【解析】
A.∵32+4+2+1+1=40(人),故A正确;
B. ∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正确;
C. ∵成绩是30分的人有32人,最多,故C 正确;
D. 该班学生这次考试成绩的中位数为30分,故D错误;
5、D
【解析】
利用两点法可画出函数图象,则可求得答案.
【详解】
在y=3x+1中,令y=0可得x=-,令x=0可得y=1,
∴直线与x轴交于点(-,0),与y轴交于点(0,1),
其函数图象如图所示,
∴函数图象不过第四象限,
故选:D.
【点睛】
本题主要考查一次函数的性质,正确画出函数图象是解题的关键.
6、B
【解析】
【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.
【详解】A. A→O→D,园丁与入口的距离逐渐增大,逐渐减小,不符合;
B. C→A→O→ B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;
C. D→O→C,园丁与入口的距离逐渐增大,不符合;
D. O→D→B→C,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,
故选B.
【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.
7、D
【解析】
直接利用分式的加减运算法则计算得出答案.
【详解】
解:
=﹣+
=﹣+
=
=,
故小明、小红都不正确.
故选:D.
【点睛】
此题主要考查了分式的加减运算,正确进行通分运算是解题关键.
8、D
【解析】
根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
【详解】
A、不是轴对称图形,故A不符合题意;
B、不是轴对称图形,故B不符合题意;
C、不是轴对称图形,故C不符合题意;
D、是轴对称图形,故D符合题意.
故选D.
【点睛】
本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
9、B
【解析】
将一次函数解析式代入到反比例函数解析式中,整理得出x2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解.
【详解】
由题意可得:﹣x+2=,
所以x2﹣2x+1﹣6t=0,
∵两函数图象有两个交点,且两交点横坐标的积为负数,
∴
解不等式组,得t>.
故选:B.
点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.
10、A
【解析】
试题解析:由于点A、B在反比例函数图象上关于原点对称,
则△ABC的面积=2|k|=2×4=1.
故选A.
考点:反比例函数系数k的几何意义.
二、填空题(共7小题,每小题3分,满分21分)
11、a
【解析】
利用整式的除法运算即可得出答案.
【详解】
原式,
.
【点睛】
本题考查的知识点是整式的除法,解题关键是先将变成,再进行运算.
12、
【解析】
∵在Rt△ABC中,BC=6,sinA=
∴AB=10
∴.
∵D是AB的中点,∴AD=AB=1.
∵∠C=∠EDA=90°,∠A=∠A
∴△ADE∽△ACB,
∴
即
解得:DE=.
13、k>3
【解析】
分析:根据函数图象所经过的象限列出不等式组通过解该不等式组可以求得k的取值范围.
详解:∵一次函教y=(k−3)x−k+2的图象经过第一、三、四象限,
∴
解得,k>3.
故答案是:k>3.
点睛:此题主要考查了一次函数图象,一次函数的图象有四种情况:
①当时,函数的图象经过第一、二、三象限;
②当时,函数的图象经过第一、三、四象限;
③当时,函数的图象经过第一、二、四象限;
④当时,函数的图象经过第二、三、四象限.
14、y=x2等
【解析】
分析:根据二次函数的图象开口向上知道a>1,又二次函数的图象过原点,可以得到c=1,所以解析式满足a>1,c=1即可.
详解:∵二次函数的图象开口向上,∴a>1.∵二次函数的图象过原点,∴c=1.
故解析式满足a>1,c=1即可,如y=x2.
故答案为y=x2(答案不唯一).
点睛:本题是开放性试题,考查了二次函数的性质,二次函数图象上点的坐标特征,对考查学生所学函数的深入理解、掌握程度具有积极的意义,但此题若想答对需要满足所有条件,如果学生没有注意某一个条件就容易出错.本题的结论是不唯一的,其解答思路渗透了数形结合的数学思想.
15、
【解析】
不等式kx+b-(x+a)>0的解集是一次函数y1=kx+b在y2=x+a的图象上方的部分对应的x的取值范围,据此即可解答.
【详解】
解:不等式的解集是.
故答案为:.
【点睛】
本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
16、1.
【解析】
试题分析:∵四边形ABCD是菱形,
∴OD=OB,∠COD=90°,
∵DH⊥AB,
∴OH=BD=OB,
∴∠OHB=∠OBH,
又∵AB∥CD,
∴∠OBH=∠ODC,
在Rt△COD中,∠ODC+∠DCO=90°,
在Rt△DHB中,∠DHO+∠OHB=90°,
∴∠DHO=∠DCO=×50°=1°.
考点:菱形的性质.
17、67.1
【解析】
试题分析:∵图中是正八边形,
∴各内角度数和=(8﹣2)×180°=1080°,
∴∠HAB=1080°÷8=131°,
∴∠BAE=131°÷2=67.1°.
故答案为67.1.
考点:多边形的内角
三、解答题(共7小题,满分69分)
18、 (1)y=﹣2t+200(1≤t≤80,t为整数); (2)第30天的日销售利润最大,最大利润为2450元;(3)共有21天符合条件.
【解析】
(1)根据函数图象,设解析式为y=kt+b,将(1,198)、(80,40)代入,利用待定系数法求解可得;
(2)设日销售利润为w,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;
(3)求出w=2400时t的值,结合函数图象即可得出答案;
【详解】
(1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得:
,解得:,∴y=﹣2t+200(1≤t≤80,t为整数);
(2)设日销售利润为w,则w=(p﹣6)y,
当1≤t≤80时,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,
∴当t=30时,w最大=2450;
∴第30天的日销售利润最大,最大利润为2450元.
(3)由(2)得:当1≤t≤80时,
w=﹣(t﹣30)2+2450,
令w=2400,即﹣ (t﹣30)2+2450=2400,
解得:t1=20、t2=40,
∴t的取值范围是20≤t≤40,
∴共有21天符合条件.
【点睛】
本题考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象解不等式及二次函数的图象与性质是解题关键.
19、S1,S3,S4,S5,1
【解析】
利用图形的拼割,正方形的性质,寻找等面积的图形,即可解决问题.
【详解】
由题意:S矩形ABCD=S1+S1+S3=1,
S4=S1,S5=S3,S6=S4+S5,S阴影面积=S1+S6=S1+S1+S3=1.
故答案为S1,S3,S4,S5,1.
【点睛】
考查正方形的性质、矩形的性质、扇形的面积等知识,解题的关键是灵活运用所学知识解决问题.
20、(1)p=0.1x+3.8;(2)该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)m的值为1.
【解析】
(1)直接利用待定系数法求一次函数解析式即可;
(2)利用销量×售价=销售金额,进而利用二次函数最值求法求出即可;
(3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可.
【详解】
(1)设p=kx+b,
把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b中,
得:
解得:,
∴p=0.1x+3.8;
(2)设该品牌手机在去年第x个月的销售金额为w万元,
w=(﹣50x+2600)(0.1x+3.8)
=﹣5x2+70x+9880
=﹣5(x﹣7)2+10125,
当x=7时,w最大=10125,
答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;
(3)当x=12时,y=100,p=5,
1月份的售价为:100(1﹣m%)元,则2月份的售价为:0.8×100(1﹣m%)元;
1月份的销量为:5×(1﹣1.5m%)万台,则2月份的销量为:[5×(1﹣1.5m%)+1.5]万台;
∴0.8×100(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,
解得:m1%=(舍去),m2%=,
∴m=1,
答:m的值为1.
【点睛】
此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,根据题意表示出2月份的销量与售价是解题关键.
21、
【解析】
试题分析:按照解一元一次不等式的步骤解不等式即可.
试题解析:,
,
.
解集在数轴上表示如下
点睛:解一元一次不等式一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.
22、(1)证明见解析(2)
【解析】
(1)连结OC,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;
(2)由△CDB∽△CAD,可得,推出CD2=CB•CA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,,设BD=k,AD=2k,在Rt△ADB中,可得2k2+4k2=5,求出k即可解决问题.
【详解】
(1)证明:连结OC,如图,
∵AD平分∠EAC,
∴∠1=∠3,
∵OA=OD,
∴∠1=∠2,
∴∠3=∠2,
∴OD∥AE,
∵AE⊥DC,
∴OD⊥CE,
∴CE是⊙O的切线;
(2)∵∠CDO=∠ADB=90°,
∴∠2=∠CDB=∠1,∵∠C=∠C,
∴△CDB∽△CAD,
∴,
∴CD2=CB•CA,
∴(3)2=3CA,
∴CA=6,
∴AB=CA﹣BC=3,,设BD=k,AD=2k,
在Rt△ADB中,2k2+4k2=5,
∴k=,
∴AD=.
23、(1)①2;②3;(2)AD=BC;(3)作图见解析;BC=4;
【解析】
(1)①根据等边三角形的性质可得出AB=AC=1、∠BAC=60,结合“旋补三角形”的定义可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三线合一可得出∠ADC′=90°,通过解直角三角形可求出AD的长度;
②由“旋补三角形”的定义可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,进而可得出△ABC≌△AB′C′(SAS),根据全等三角形的性质可得出B′C′=BC=6,再利用直角三角形斜边上的中线等于斜边的一半即可求出AD的长度;(2)AD=BC,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形,根据平行四边形的性质结合“旋补三角形”的定义可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,进而可证出△BAC≌△AB′E(SAS),根据全等三角形的性质可得出BC=AE,由平行四边形的对角线互相平分即可证出AD=BC;(3)作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外角圆圆心,过点P作PF⊥BC于点F,由(2)的结论可求出PF的长度,在Rt△BPF中,利用勾股定理可求出BF的长度,进而可求出BC的长度.
【详解】
(1)①∵△ABC是等边三角形,BC=1,
∴AB=AC=1,∠BAC=60,
∴AB′=AC′=1,∠B′AC′=120°.
∵AD为等腰△AB′C′的中线,
∴AD⊥B′C′,∠C′=30°,
∴∠ADC′=90°.
在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,
∴AD=AC′=2.
②∵∠BAC=90°,
∴∠B′AC′=90°.
在△ABC和△AB′C′中,,
∴△ABC≌△AB′C′(SAS),
∴B′C′=BC=6,
∴AD=B′C′=3.
故答案为:①2;②3.
(2)AD=BC.
证明:在图1中,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形.
∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,
∴∠BAC=∠AB′E.
在△BAC和△AB′E中,,
∴△BAC≌△AB′E(SAS),
∴BC=AE.
∵AD=AE,
∴AD=BC.
(3)在图1中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外接圆圆心,过点P作PF⊥BC于点F.
∵PB=PC,PF⊥BC,
∴PF为△PBC的中位线,
∴PF=AD=3.
在Rt△BPF中,∠BFP=90°,PB=5,PF=3,
∴BF==1,
∴BC=2BF=4.
【点睛】
本题考查了等边三角形的性质、等腰三角形的判定与性质、平行四边形的性质、解直角三角形、勾股定理以及全等三角形的判定与性质,解题的关键是:(1)①利用解含30°角的直角三角形求出AD=AC′;②牢记直角三角形斜边上的中线等于斜边的一半;(2)构造平行四边形,利用平行四边形对角线互相平分找出AD=AE=BC;(3)利用(2)的结论结合勾股定理求出BF的长度.
24、(1)AB=2;相等;(2)a=±;(3), .
【解析】
(1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,设出点B的坐标为(n,-n),根据二次函数得出n的值,然后得出AB的值,②因为抛物线y=x2+1与y=x2的形状相同,所以抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;
(2)根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B的坐标,得出a的值;根据最大值得出mn-4m-1=0,根据抛物线的完美三角形的斜边长为n得出点B的坐标,然后代入抛物线求出m和n的值.
(3)根据的最大值为-1,得到化简得mn-4m-1=0,抛物线的“完美三角形”斜边长为n,所以抛物线2的“完美三角形”斜边长为n,得出B点坐标,代入可得mn关系式,即可求出m、n的值.
【详解】
(1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,AB∥x轴,
易证MN=BN,设B点坐标为(n,-n),代入抛物线,得,
∴,(舍去),∴抛物线的“完美三角形”的斜边
②相等;
(2)∵抛物线与抛物线的形状相同,
∴抛物线与抛物线的“完美三角形”全等,
∵抛物线的“完美三角形”斜边的长为4,∴抛物线的“完美三角形”斜边的长为4,
∴B点坐标为(2,2)或(2,-2),∴.
(3)∵ 的最大值为-1,
∴ ,
∴ ,
∵抛物线的“完美三角形”斜边长为n,
∴抛物线的“完美三角形”斜边长为n,
∴B点坐标为,
∴代入抛物线,得,
∴ (不合题意舍去),
∴,
∴
相关试卷
这是一份福建省福州市延安中学2022年中考数学对点突破模拟试卷含解析,共17页。
这是一份2022年福建省福州市福建师范大泉州附属中学中考数学对点突破模拟试卷含解析,共22页。试卷主要包含了二次函数的对称轴是,计算﹣1﹣,比1小2的数是等内容,欢迎下载使用。
这是一份2022届重庆清化中学中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了如图,,,则的大小是等内容,欢迎下载使用。