2022年成都市金堂县金龙中学中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.如图,线段AB是直线y=4x+2的一部分,点A是直线与y轴的交点,点B的纵坐标为6,曲线BC是双曲线y=的一部分,点C的横坐标为6,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线.点P(2017,m)与Q(2020,n)均在该波浪线上,分别过P、Q两点向x轴作垂线段,垂足为点D和E,则四边形PDEQ的面积是( )
A.10 B. C. D.15
2.的相反数是( )
A. B.2 C. D.
3.汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是s=20t﹣5t2,汽车刹车后停下来前进的距离是( )
A.10m B.20m C.30m D.40m
4.在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为( )
A.1 B.m C.m2 D.
5.一元二次方程x2+2x﹣15=0的两个根为( )
A.x1=﹣3,x2=﹣5 B.x1=3,x2=5
C.x1=3,x2=﹣5 D.x1=﹣3,x2=5
6. (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )
A.2 B. C.5 D.
7.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是( )
A.12 B.16 C.20 D.24
8.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是( )
A. B. C. D.
9.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是( )
A.掷一枚正六面体的骰子,出现1点的概率
B.抛一枚硬币,出现正面的概率
C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率
D.任意写一个整数,它能被2整除的概率
10.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )
A. B. C.- D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为_____.
12.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.
13.如图,把△ABC绕点C顺时针旋转得到△A'B'C',此时A′B′⊥AC于D,已知∠A=50°,则∠B′CB的度数是_____°.
14.若x=-1, 则x2+2x+1=__________.
15.将数字37000000用科学记数法表示为_____.
16.比较大小: .(填“>”,“<”或“=”)
三、解答题(共8题,共72分)
17.(8分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.
(1)按如下分数段整理、描述这两组数据:
成绩x 学生 | 70≤x≤74 | 75≤x≤79 | 80≤x≤84 | 85≤x≤89 | 90≤x≤94 | 95≤x≤100 |
甲 | ______ | ______ | ______ | ______ | ______ | ______ |
乙 | 1 | 1 | 4 | 2 | 1 | 1 |
(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:
学生 | 极差 | 平均数 | 中位数 | 众数 | 方差 |
甲 | ______ | 83.7 | ______ | 86 | 13.21 |
乙 | 24 | 83.7 | 82 | ______ | 46.21 |
(3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.
18.(8分)如图,在平行四边形ABCD中,BD为对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,连接AF、CE,求证:AF=CE.
19.(8分)如图,∠A=∠B=30°
(1)尺规作图:过点C作CD⊥AC交AB于点D;
(只要求作出图形,保留痕迹,不要求写作法)
(2)在(1)的条件下,求证:BC2=BD•AB.
20.(8分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象.
(1)求y与x的函数关系式;
(2)直接写出自变量x的取值范围.
21.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.
请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?
22.(10分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.
请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.
23.(12分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示.
时间段(小时/周) | 小丽抽样(人数) | 小杰抽样(人数) |
0~1 | 6 | 22 |
1~2 | 10 | 10 |
2~3 | 16 | 6 |
3~4 | 8 | 2 |
(1)你认为哪位学生抽取的样本不合理?请说明理由.专家建议每周上网2小时以上(含2小时)的学生应适当减少上网的时间,估计该校全体初二学生中有多少名学生应适当减少上网的时间.
24.甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛. 若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是 . 若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
A,C之间的距离为6,点Q与点P的水平距离为3,进而得到A,B之间的水平距离为1,且k=6,根据四边形PDEQ的面积为,即可得到四边形PDEQ的面积.
【详解】
A,C之间的距离为6,
2017÷6=336…1,故点P离x轴的距离与点B离x轴的距离相同,
在y=4x+2中,当y=6时,x=1,即点P离x轴的距离为6,
∴m=6,
2020﹣2017=3,故点Q与点P的水平距离为3,
∵
解得k=6,
双曲线
1+3=4,
即点Q离x轴的距离为,
∴
∵四边形PDEQ的面积是.
故选:C.
【点睛】
考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大.
2、D
【解析】
因为-+=0,所以-的相反数是.
故选D.
3、B
【解析】
利用配方法求二次函数最值的方法解答即可.
【详解】
∵s=20t-5t2=-5(t-2)2+20,
∴汽车刹车后到停下来前进了20m.
故选B.
【点睛】
此题主要考查了利用配方法求最值的问题,根据已知得出顶点式是解题关键.
4、D
【解析】
本题主要考察二次函数与反比例函数的图像和性质.
【详解】
令二次函数中y=m.即x2=m,解得x=或x=令反比例函数中y=m,即=m,解得x=,将x的三个值相加得到ω=+()+=.所以本题选择D.
【点睛】
巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.
5、C
【解析】
运用配方法解方程即可.
【详解】
解:x2+2x﹣15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.
故选择C.
【点睛】
本题考查了解一元二次方程,选择合适的解方程方法是解题关键.
6、B
【解析】
根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.
【详解】
根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.
故选B
【点睛】
本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.
7、D
【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.
【详解】
、分别是、的中点,
是的中位线,
,
菱形的周长.
故选:.
【点睛】
本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
8、A
【解析】
∵Rt△ABC中,∠C=90°,sinA=,
∴cosA=,
∴∠A+∠B=90°,
∴sinB=cosA=.
故选A.
9、C
【解析】
解:A.掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;
B.掷一枚硬币,出现正面朝上的概率为,故此选项错误;
C.从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:≈0.33;故此选项正确;
D.任意写出一个整数,能被2整除的概率为,故此选项错误.
故选C.
10、A
【解析】
先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.
【详解】
∵∠ACB=90°,AC=BC=1,
∴AB=,
∴S扇形ABD=,
又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
∴Rt△ADE≌Rt△ACB,
∴S阴影部分=S△ADE+S扇形ABD−S△ABC=S扇形ABD=,
故选A.
【点睛】
本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、60°
【解析】
解:∵BD是⊙O的直径,
∴∠BCD=90°(直径所对的圆周角是直角),
∵∠CBD=30°,
∴∠D=60°(直角三角形的两个锐角互余),
∴∠A=∠D=60°(同弧所对的圆周角相等);
故答案是:60°
12、a≤且a≠1.
【解析】
根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可.
【详解】
由题意得:△≥0,即(-1)2-4(a-1)×1≥0,
解得a≤,
又a-1≠0,
∴a≤且a≠1.
故答案为a≤且a≠1.
点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.
13、1
【解析】
由旋转的性质可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=1°=∠B′CB.
【详解】
解:∵把△ABC绕点C顺时针旋转得到△A'B'C',
∴∠A=∠A'=50°,∠BCB'=∠ACA'
∵A'B'⊥AC
∴∠A'+∠ACA'=90°
∴∠ACA'=1°
∴∠BCB'=1°
故答案为:1.
【点睛】
本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.
14、2
【解析】
先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.
【详解】
∵x=-1,
∴x2+2x+1=(x+1)2=(-1+1)2=2,
故答案为:2.
【点睛】
本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.
15、3.7×107
【解析】
根据科学记数法即可得到答案.
【详解】
数字37000000用科学记数法表示为3.7×107.
【点睛】
本题主要考查了科学记数法的基本概念,解本题的要点在于熟知科学记数法的相关知识.
16、>
【解析】
试题分析:根据二次根式的性质可知,被开方数越大,所对应的二次根式就越大,因此可判断与=1的大小为>1.
考点:二次根式的大小比较
三、解答题(共8题,共72分)
17、(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由见解析
【解析】
(1)根据折线统计图数字进行填表即可;
(2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;
(3)可分别从平均数、方差、极差三方面进行比较.
【详解】
(1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,
∴70⩽x⩽74无,共0个;
75⩽x⩽79之间有75,共1个;
80⩽x⩽84之间有84,82,1,83,共4个;
85⩽x⩽89之间有89,86,86,85,86,共5个;
90⩽x⩽94之间和95⩽x⩽100无,共0个.
故答案为0;1;4;5;0;0;
(2)由图可知:甲的最高分为89分,最低分为75分,极差为89−75=14分;
∵甲的成绩为从低到高排列为:75,1,82,83,84,85,86,86,86,89,
∴中位数为(84+85)=84.5;
∵乙的成绩为从低到高排列为:72,76,1,1,1,83,87,89,91,96,
1出现3次,乙成绩的众数为1.
故答案为14;84.5;1;
(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.
或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论)
故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.
【点睛】
此题考查折线统计图,统计表,平均数,中位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据.
18、见解析
【解析】
易证△ABE≌△CDF,得AE=CF,即可证得△AEF≌△CFE,即可得证.
【详解】
在平行四边形ABCD中,AB∥CD,AB=CD
∴∠ABE=∠CDF,
又AE⊥BD,CF⊥BD
∴△ABE≌△CDF(AAS),
∴AE=CF
又∠AEF=∠CFE,EF=FE,
∴△AEF≌△CFE(SAS)
∴AF=CE.
【点睛】
此题主要考查平行四边形的性质与全等三角形的判定与性质,解题的关键是熟知平行四边形的性质定理.
19、见解析
【解析】
(1)利用过直线上一点作直线的垂线确定D点即可得;
(2)根据圆周角定理,由∠ACD=90°,根据三角形的内角和和等腰三角形的性质得到∠DCB=∠A=30°,推出△CDB∽△ACB,根据相似三角形的性质即可得到结论.
【详解】
(1)如图所示,CD即为所求;
(2)∵CD⊥AC,
∴∠ACD=90°
∵∠A=∠B=30°,
∴∠ACB=120°
∴∠DCB=∠A=30°,
∵∠B=∠B,
∴△CDB∽△ACB,
∴,
∴BC2=BD•AB.
【点睛】
考查了等腰三角形的性质和相似三角形的判定和性质和作图:在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
20、(1)y=-2x+31,(2)20≤x≤1
【解析】
试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y与x的函数关系式;
(2)根据试销期间销售单价不低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x的取值范围.
试题解析:
(1)设y与x的函数关系式为y=kx+b,根据题意,得:
解得:
∴y与x的函数解析式为y=-2x+31,
(2) ∵试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元,
∴自变量x的取值范围是20≤x≤1.
21、(1)作图见解析;(2)1.
【解析】
试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;
(2)用样本估计总体的思想,即可解决问题;
试题解析:解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人
九年级被抽到的志愿者:50×20%=10人,条形图如图所示:
(2)该校共有志愿者600人,则该校九年级大约有600×20%=1人.
答:该校九年级大约有1名志愿者.
22、200名;见解析;;(4)375.
【解析】
根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;
根据中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整;
根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;
根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.
【详解】
解:,
答:此次抽样调查中,共调查了200名学生;
反对的人数为:,
补全的条形统计图如右图所示;
扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:;
(4),
答:该校1500名学生中有375名学生持“无所谓”意见.
【点睛】
本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
23、(1)小丽;(2)80
【解析】
解:(1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有随机性与代表性.
(2).
答:该校全体初二学生中有80名同学应适当减少上网的时间.
24、 (1);(2)
【解析】
1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案.
【详解】
解:(1)∵甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,∴恰好选到丙的概率是: ;
(2)画树状图得:
∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,
∴恰好选中甲、乙两人的概率为:
【点睛】
此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
2023-2024学年成都市金堂县金龙中学数学九年级第一学期期末预测试题含答案: 这是一份2023-2024学年成都市金堂县金龙中学数学九年级第一学期期末预测试题含答案,共7页。试卷主要包含了若反比例函数的图象上有两点P1等内容,欢迎下载使用。
2023-2024学年成都市金堂县金龙中学八年级数学第一学期期末达标测试试题含答案: 这是一份2023-2024学年成都市金堂县金龙中学八年级数学第一学期期末达标测试试题含答案,共7页。
2022-2023学年成都市金堂县金龙中学数学七下期末复习检测模拟试题含答案: 这是一份2022-2023学年成都市金堂县金龙中学数学七下期末复习检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列代数式变形正确的是等内容,欢迎下载使用。