四川省成都市育才校2021-2022学年中考数学仿真试卷含解析
展开
这是一份四川省成都市育才校2021-2022学年中考数学仿真试卷含解析,共26页。试卷主要包含了y=等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的( )
A.平均数 B.中位数 C.众数 D.方差
2.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为( )
A.2.3 B.2.4 C.2.5 D.2.6
3.如果零上2℃记作+2℃,那么零下3℃记作( )
A.-3℃ B.-2℃ C.+3℃ D.+2℃
4.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AB=c,∠A=α,则CD长为( )
A.c•sin2α B.c•cos2α C.c•sinα•tanα D.c•sinα•cosα
5.y=(m﹣1)x|m|+3m表示一次函数,则m等于( )
A.1 B.﹣1 C.0或﹣1 D.1或﹣1
6.据浙江省统计局发布的数据显示,2017年末,全省常住人口为5657万人数据“5657万”用科学记数法表示为
A. B. C. D.
7.若方程x2﹣3x﹣4=0的两根分别为x1和x2,则+的值是( )
A.1 B.2 C.﹣ D.﹣
8.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:
得分(分)
60
70
80
90
100
人数(人)
7
12
10
8
3
则得分的众数和中位数分别为( )
A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分
9.在下列四个标志中,既是中心对称又是轴对称图形的是( )
A. B. C. D.
10.一个几何体的三视图如图所示,这个几何体是( )
A.三菱柱 B.三棱锥 C.长方体 D.圆柱体
11.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是( )
A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x
C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x
12.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.设、是一元二次方程的两实数根,则的值为 .
14.如果将抛物线平移,使平移后的抛物线顶点坐标为,那么所得新抛物线的表达式是__________.
15.分解因式:4a2﹣1=_____.
16.如图,在直角三角形ABC中,∠ACB=90°,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB(指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是_____.
17.如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC.若AD=6,BD=2,DE=3,则BC=______.
18.若,则= .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.
(1)求证:AC=CE;
(2)求证:BC2﹣AC2=AB•AC;
(1)已知⊙O的半径为1.
①若=,求BC的长;
②当为何值时,AB•AC的值最大?
20.(6分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
21.(6分)如图, 二次函数的图象与 x 轴交于和两点,与 y 轴交于点 C,一次函数的图象过点 A、C.
(1)求二次函数的表达式
(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量 x 的取值范围.
22.(8分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)
根据上图提供的信息回答下列问题:
(1)被抽查的居民中,人数最多的年龄段是 岁;
(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图1.
注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100%.
23.(8分)如图1,在等边三角形中,为中线,点在线段上运动,将线段绕点顺时针旋转,使得点的对应点落在射线上,连接,设(且).
(1)当时,
①在图1中依题意画出图形,并求(用含的式子表示);
②探究线段,,之间的数量关系,并加以证明;
(2)当时,直接写出线段,,之间的数量关系.
24.(10分)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
(1)求抛物线解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MOA的面积为S.求S关于m的函数关系式,并求出当m为何值时,S有最大值,这个最大值是多少?
(3)若点Q是直线y=﹣x上的动点,过Q做y轴的平行线交抛物线于点P,判断有几个Q能使以点P,Q,B,O为顶点的四边形是平行四边形的点,直接写出相应的点Q的坐标.
25.(10分)如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D作DE⊥AC交BA延长线于点E,垂足为点F.
(1)求tan∠ADF的值;
(2)证明:DE是⊙O的切线;
(3)若⊙O的半径R=5,求EF的长.
26.(12分)如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.
(1)求证:△ABF≌△EDF;
(2)若AB=6,BC=8,求AF的长.
27.(12分)今年 3 月 12 日植树节期间, 学校预购进 A、B 两种树苗,若购进 A种树苗 3 棵,B 种树苗 5 棵,需 2100 元,若购进 A 种树苗 4 棵,B 种树苗 10棵,需 3800 元.
(1)求购进 A、B 两种树苗的单价;
(2)若该单位准备用不多于 8000 元的钱购进这两种树苗共 30 棵,求 A 种树苗至少需购进多少棵?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.
【详解】
因为需要保证不少于50%的骑行是免费的,
所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,
故选B.
【点睛】
本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。
2、B
【解析】
试题分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,
∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,
∵S△ABC=AC×BC=AB×CD,∴AC×BC=AB×CD,即CD===,
∴⊙C的半径为,故选B.
考点:圆的切线的性质;勾股定理.
3、A
【解析】
一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
【详解】
∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.
故选A.
4、D
【解析】
根据锐角三角函数的定义可得结论.
【详解】
在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根据锐角三角函数的定义可得sinα= ,
∴BC=c•sinα,
∵∠A+∠B=90°,∠DCB+∠B=90°,
∴∠DCB=∠A=α
在Rt△DCB中,∠CDB=90°,
∴cos∠DCB= ,
∴CD=BC•cosα=c•sinα•cosα,
故选D.
5、B
【解析】
由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.
6、C
【解析】
科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
解:5657万用科学记数法表示为,
故选:C.
【点睛】
此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
7、C
【解析】
试题分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用异分母分式的变形,将求出的两根之和x1+x2=3与两根之积x1•x2=﹣4代入,即可求出=.
故选C.
考点:根与系数的关系
8、C
【解析】
解:根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故中位数为80分.
故选C.
【点睛】
本题考查数据分析.
9、C
【解析】
根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.
【详解】
解:A、不是中心对称图形,是轴对称图形,故本选项错误;
B、既不是中心对称图形,也不是轴对称图形,故本选项错误;
C、既是中心对称图形又是轴对称图形,故本选项正确;
D、不是中心对称图形,是轴对称图形,故本选项错误.
故选C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
10、A
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
由于左视图和俯视图为长方形可得此几何体为柱体,由主视图为三角形可得为三棱柱.
故选:B.
【点睛】
此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
11、C
【解析】
试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可
【详解】
.故选C.
解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得
1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.
12、B
【解析】
由俯视图所标该位置上小立方块的个数可知,左侧一列有2层,右侧一列有1层.
【详解】
根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2列,从左到右的列数分别是2,1.
故选B.
【点睛】
此题考查了三视图判断几何体,用到的知识点是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、27
【解析】
试题分析:根据一元二次方程根与系数的关系,可知+=5,·=-1,因此可知=-2=25+2=27.
故答案为27.
点睛:此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:,,确定系数a,b,c的值代入求解,然后再通过完全平方式变形解答即可.
14、.
【解析】
平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.
【详解】
∵原抛物线解析式为y=1x1,顶点坐标是(0,0),平移后抛物线顶点坐标为(1,1),∴平移后的抛物线的表达式为:y=1(x﹣1)1+1.
故答案为:y=1(x﹣1)1+1.
【点睛】
本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.
15、(2a+1)(2a﹣1)
【解析】
有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.
【详解】
4a2﹣1=(2a+1)(2a﹣1).
故答案为:(2a+1)(2a-1).
【点睛】
此题考查多项式因式分解,根据多项式的特点选择适合的分解方法是解题的关键.
16、4
【解析】
连接把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为的面积的2倍.
【详解】
解:连接OP、OB,
∵图形BAP的面积=△AOB的面积+△BOP的面积+扇形OAP的面积,
图形BCP的面积=△BOC的面积+扇形OCP的面积−△BOP的面积,
又∵点P是半圆弧AC的中点,OA=OC,
∴扇形OAP的面积=扇形OCP的面积,△AOB的面积=△BOC的面积,
∴两部分面积之差的绝对值是
点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.
17、1
【解析】
根据已知DE∥BC得出=进而得出BC的值
【详解】
∵DE∥BC,AD=6,BD=2,DE=3,
∴△ADE∽△ABC,
∴,
∴,
∴BC=1,
故答案为1.
【点睛】
此题考查了平行线分线段成比例的性质,解题的关键在于利用三角形的相似求三角形的边长.
18、1.
【解析】
试题分析:有意义,必须,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案为1.
考点:二次根式有意义的条件.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析;(2)证明见解析;(1)①BC=4;②
【解析】
分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA得,即BF•BG=BE•AB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;
(1)①设AB=5k、AC=1k,由BC2-AC2=AB•AC知BC=2k,连接ED交BC于点M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=1-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.
详解:(1)∵四边形EBDC为菱形,
∴∠D=∠BEC,
∵四边形ABDC是圆的内接四边形,
∴∠A+∠D=180°,
又∠BEC+∠AEC=180°,
∴∠A=∠AEC,
∴AC=CE;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,
由(1)知AC=CE=CD,
∴CF=CG=AC,
∵四边形AEFG是⊙C的内接四边形,
∴∠G+∠AEF=180°,
又∵∠AEF+∠BEF=180°,
∴∠G=∠BEF,
∵∠EBF=∠GBA,
∴△BEF∽△BGA,
∴,即BF•BG=BE•AB,
∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,
∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;
(1)设AB=5k、AC=1k,
∵BC2﹣AC2=AB•AC,
∴BC=2k,
连接ED交BC于点M,
∵四边形BDCE是菱形,
∴DE垂直平分BC,
则点E、O、M、D共线,
在Rt△DMC中,DC=AC=1k,MC=BC=k,
∴DM=,
∴OM=OD﹣DM=1﹣k,
在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,
解得:k=或k=0(舍),
∴BC=2k=4;
②设OM=d,则MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,
∴BC2=(2MC)2=16﹣4d2,
AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,
由(2)得AB•AC=BC2﹣AC2
=﹣4d2+6d+18
=﹣4(d﹣)2+,
∴当d=,即OM=时,AB•AC最大,最大值为,
∴DC2=,
∴AC=DC=,
∴AB=,此时.
点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.
20、 (1)抛物线的解析式为:y=﹣x1+x+1
(1)存在,P1(,2),P1(,),P3(,﹣)
(3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.
【解析】
试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;
(1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;
(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.
试题解析:(1)∵抛物线y=﹣x1+mx+n经过A(﹣1,0),C(0,1).
解得:,
∴抛物线的解析式为:y=﹣x1+x+1;
(1)∵y=﹣x1+x+1,
∴y=﹣(x﹣)1+,
∴抛物线的对称轴是x=.
∴OD=.
∵C(0,1),
∴OC=1.
在Rt△OCD中,由勾股定理,得
CD=.
∵△CDP是以CD为腰的等腰三角形,
∴CP1=CP1=CP3=CD.
作CH⊥x轴于H,
∴HP1=HD=1,
∴DP1=2.
∴P1(,2),P1(,),P3(,﹣);
(3)当y=0时,0=﹣x1+x+1
∴x1=﹣1,x1=2,
∴B(2,0).
设直线BC的解析式为y=kx+b,由图象,得
,
解得:,
∴直线BC的解析式为:y=﹣x+1.
如图1,过点C作CM⊥EF于M,设E(a,﹣a+1),F(a,﹣a1+a+1),
∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).
∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,
=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),
=﹣a1+2a+(0≤x≤2).
=﹣(a﹣1)1+
∴a=1时,S四边形CDBF的面积最大=,
∴E(1,1).
考点:1、勾股定理;1、等腰三角形的性质;3、四边形的面积;2、二次函数的最值
21、(1);(2).
【解析】
(1)将和两点代入函数解析式即可;
(2)结合二次函数图象即可.
【详解】
解:(1)∵二次函数与轴交于和两点,
解得
∴二次函数的表达式为.
(2)由函数图象可知,二次函数值大于一次函数值的自变量x的取值范围是.
【点睛】
本题考查了待定系数法求二次函数解析式以及二次函数与不等式,解题的关键是熟悉二次函数的性质.
22、(1)11~30;(1)31~40岁年龄段的满意人数为66人,图见解析;
【解析】
(1)取扇形统计图中所占百分比最大的年龄段即可;
(1)先求出总体感到满意的总人数,然后减去其它年龄段的人数即可,再补全条形图.
【详解】
(1)由扇形统计图可得11~30岁的人数所占百分比最大为39%,
所以,人数最多的年龄段是11~30岁;
(1)根据题意,被调查的人中,总体印象感到满意的有:400×83%=331人,
31~40岁年龄段的满意人数为:331﹣54﹣116﹣53﹣14﹣9=331﹣116=66人,
补全统计图如图.
【点睛】
本题考点:条形统计图与扇形统计图.
23、(1)①;②;(2)
【解析】
(1)①先根据等边三角形的性质的,进而得出,最后用三角形的内角和定理即可得出结论;②先判断出,得出,再判断出是底角为30度的等腰三角形,再构造出直角三角形即可得出结论;(2)同②的方法即可得出结论.
【详解】
(1)当时,
①画出的图形如图1所示,
∵为等边三角形,
∴.
∵为等边三角形的中线
∴是的垂直平分线,
∵为线段上的点,
∴.
∵,
∴,.
∵线段为线段绕点顺时针旋转所得,
∴.
∴.
∴,
∴;
②;
如图2,延长到点,使得,连接,作于点.
∵,点在上,
∴.
∵点在的延长线上,,
∴.
∴.
又∵,,
∴.
∴.
∵于点,
∴,.
∵在等边三角形中,为中线,点在上,
∴,
即为底角为的等腰三角形.
∴.
∴.
(2)如图3,当时,
在上取一点使,
∵为等边三角形,
∴.
∵为等边三角形的中线,
∵为线段上的点,
∴是的垂直平分线,
∴.
∵,
∴,.
∵线段为线段绕点顺时针旋转所得,
∴.
∴.
∴,
又∵,,
∴.
∴.
∵于点,
∴,.
∵在等边三角形中,为中线,点在上,
∴,
∴.
∴.
【点睛】
此题是几何变换综合题,主要考查了等边三角形的性质,三角形的内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,锐角三角函数,作出辅助线构造出全等三角形是解本题的关键.
24、(1)y=x2+x﹣4;(2)S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;(3)Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.
【解析】
(1)设抛物线解析式为y= ax2 + bx + c,然后把点A、B、C的坐标代入函数解析式,利用待定系数法求解即可;
(2)利用抛物线的解析式表示出点M的纵坐标,从而得到点M到x轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解;
(3)利用直线与抛物线的解析式表示出点P、Q的坐标,然后求出PQ的长度,再根据平行四边形的对边相等列出算式,然后解关于x的一元二次方程即可得解.
【详解】
解:(1)设抛物线解析式为y=ax2+bx+c,
∵抛物线经过A(﹣4,0),B(0,﹣4),C(2,0),
∴,
解得,
∴抛物线解析式为y=x2+x﹣4;
(2)∵点M的横坐标为m,
∴点M的纵坐标为m2+m﹣4,
又∵A(﹣4,0),
∴AO=0﹣(﹣4)=4,
∴S=×4×|m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,
∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,点M为第三象限内抛物线上一动点,
∴当m=﹣1时,S有最大值,最大值为S=9;
故答案为S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;
(3)∵点Q是直线y=﹣x上的动点,
∴设点Q的坐标为(a,﹣a),
∵点P在抛物线上,且PQ∥y轴,
∴点P的坐标为(a,a2+a﹣4),
∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,
又∵OB=0﹣(﹣4)=4,
以点P,Q,B,O为顶点的四边形是平行四边形,
∴|PQ|=OB,
即|﹣a2﹣2a+4|=4,
①﹣a2﹣2a+4=4时,整理得,a2+4a=0,
解得a=0(舍去)或a=﹣4,
﹣a=4,
所以点Q坐标为(﹣4,4),
②﹣a2﹣2a+4=﹣4时,整理得,a2+4a﹣16=0,
解得a=﹣2±2,
所以点Q的坐标为(﹣2+2,2﹣2)或(﹣2﹣2,2+2),
综上所述,Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.
【点睛】
本题是对二次函数的综合考查有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.
25、(1);(2)见解析;(3)
【解析】
(1) AB是⊙O的直径,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;
(2)连接OD,由已知条件证明AC∥OD,又DE⊥AC,可得DE是⊙O的切线;
(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的长.
【详解】
解:(1)∵AB是⊙O的直径,
∴∠ADB=90°,
∵AB=AC,
∴∠BAD=∠CAD,
∵DE⊥AC,
∴∠AFD=90°,
∴∠ADF=∠B,
∴tan∠ADF=tan∠B==;
(2)连接OD,
∵OD=OA,
∴∠ODA=∠OAD,
∵∠OAD=∠CAD,
∴∠CAD=∠ODA,
∴AC∥OD,
∵DE⊥AC,
∴OD⊥DE,
∴DE是⊙O的切线;
(3)设AD=x,则BD=2x,
∴AB=x=10,
∴x=2,
∴AD=2,
同理得:AF=2,DF=4,
∵AF∥OD,
∴△AFE∽△ODE,
∴,
∴=,
∴EF=.
【点睛】
本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视.
26、(1)见解析;(2)
【解析】
(1)根据矩形的性质可得AB=CD,∠C=∠A=90°,再根据折叠的性质可得DE=CD,∠C=∠E=90°,然后利用“角角边”证明即可;
(2)设AF=x,则BF=DF=8-x,根据勾股定理列方程求解即可.
【详解】
(1)证明:在矩形ABCD中,AB=CD,∠A=∠C=90°,
由折叠得:DE=CD,∠C=∠E=90°,
∴AB=DE,∠A=∠E=90°,
∵∠AFB=∠EFD,
∴△ABF≌△EDF(AAS);
(2)解:∵△ABF≌△EDF,
∴BF=DF,
设AF=x,则BF=DF=8﹣x,
在Rt△ABF中,由勾股定理得:
BF2=AB2+AF2,即(8﹣x)2=x2+62,
x=,即AF=
【点睛】
本题考查了翻折变换的性质,全等三角形的判定与性质,矩形的性质,勾股定理,翻折前后对应边相等,对应角相等,利用勾股定理列出方程是解题的关键.
27、(1)购进 A 种树苗的单价为 200 元/棵,购进 B 种树苗的单价为 300 元/棵(2)A 种 树苗至少需购进 1 棵
【解析】
(1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据“若购进A种树苗3棵,B种树苗5棵,需210元,若购进A种树苗4棵,B种树苗1棵,需3800元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设需购进A种树苗a棵,则购进B种树苗(30-a)棵,根据总价=单价×购买数量结合购买两种树苗的总费用不多于8000元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.
【详解】
设购进 A 种树苗的单价为 x 元/棵,购进 B 种树苗的单价为 y 元/棵,根据题意得: ,
解得: .
答:购进 A 种树苗的单价为 200 元/棵,购进 B 种树苗的单价为 300 元/棵.
(2)设需购进 A 种树苗 a 棵,则购进 B 种树苗(30﹣a)棵,根据题意得:
200a+300(30﹣a)≤8000,
解得:a≥1.
∴A种树苗至少需购进 1 棵.
【点睛】
本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,正确列出一元一次不等式.
相关试卷
这是一份四川省成都市温江县重点达标名校2021-2022学年中考数学仿真试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,函数y=mx2+,在中,,,,则的值是等内容,欢迎下载使用。
这是一份四川省成都市龙泉九中重点名校2021-2022学年中考数学仿真试卷含解析,共18页。
这是一份四川省成都市锦江区七中学育才校2021-2022学年中考数学押题卷含解析,共20页。试卷主要包含了二次函数y=﹣等内容,欢迎下载使用。