2021-2022学年江苏省扬州市教育科研究院中考数学最后冲刺浓缩精华卷含解析
展开
这是一份2021-2022学年江苏省扬州市教育科研究院中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了化简的结果为,下列哪一个是假命题等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是( )
A. B.
C. D.
2.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为( )
A.60 n mile B.60 n mile C.30 n mile D.30 n mile
3.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为( )
A.4 B.﹣4 C.3 D.﹣3
4.对于两组数据A,B,如果sA2>sB2,且,则( )
A.这两组数据的波动相同 B.数据B的波动小一些
C.它们的平均水平不相同 D.数据A的波动小一些
5.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为( )
A.15m B.25m C.30m D.20m
6.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )
A.小丽从家到达公园共用时间20分钟 B.公园离小丽家的距离为2000米
C.小丽在便利店时间为15分钟 D.便利店离小丽家的距离为1000米
7.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是( )
A. B. C. D.
8.化简的结果为( )
A.﹣1 B.1 C. D.
9.下列哪一个是假命题( )
A.五边形外角和为360°
B.切线垂直于经过切点的半径
C.(3,﹣2)关于y轴的对称点为(﹣3,2)
D.抛物线y=x2﹣4x+2017对称轴为直线x=2
10.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )
A.73 B.81 C.91 D.109
11.如图,在中,点D、E、F分别在边、、上,且,.下列四种说法: ①四边形是平行四边形;②如果,那么四边形是矩形;③如果平分,那么四边形是菱形;④如果且,那么四边形是菱形. 其中,正确的有( ) 个
A.1 B.2 C.3 D.4
12.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为( )
A.﹣1 B.0 C.1或﹣1 D.2或0
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算:()•=__.
14.计算:×(﹣2)=___________.
15.如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,联结CP,将△BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP//AB,则AB的长等于________.
16.已知二次函数f(x)=x2-3x+1,那么f(2)=_________.
17.计算:﹣1﹣2=_____.
18.已知:如图,△ABC内接于⊙O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为__.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知如图①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一条直线上,点M,N,F分别为AB,ED,AD的中点,∠B=∠EDC=45°,
(1)求证MF=NF
(2)当∠B=∠EDC=30°,A,C,D在同一条直线上或不在同一条直线上,如图②,图③这两种情况时,请猜想线段MF,NF之间的数量关系.(不必证明)
20.(6分)已知:如图,在四边形ABCD中,AD∥BC,点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.
(1)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=,求⊙O的半径.
21.(6分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).
(1)求m的值和一次函数的解析式;
(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;
(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.
22.(8分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.求点B的坐标及直线AB的解析式;判断四边形CBED的形状,并说明理由.
23.(8分)(1)(问题发现)小明遇到这样一个问题:
如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.
(1)小明发现,过点D作DF//AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系: ;
(2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件
不变),试猜想AD与DE之间的数量关系,并证明你的结论.
(3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,
请直接写出△ABC与△ADE的面积之比.
24.(10分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.414
25.(10分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.
26.(12分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一老人坐在MN这层台阶上晒太阳.(取1.73)
(1)求楼房的高度约为多少米?
(2)过了一会儿,当α=45°时,问老人能否还晒到太阳?请说明理由.
27.(12分)已知二次函数.
(1)该二次函数图象的对称轴是;
(2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;
(3)对于该二次函数图象上的两点,,设,当时,均有,请结合图象,直接写出的取值范围.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
由一元二次方程有实数根可知△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.
【详解】
∵关于x的一元二次方程x2−2x+k+2=0有实数根,
∴△=(−2)2−4(k+2)⩾0,
解得:k⩽−1,
在数轴上表示为:
故选C.
【点睛】
本题考查了一元二次方程根的判别式.根据一元二次方程根的情况利用根的判别式列出不等式是解题的关键.
2、B
【解析】
如图,作PE⊥AB于E.
在Rt△PAE中,∵∠PAE=45°,PA=60n mile,
∴PE=AE=×60=n mile,
在Rt△PBE中,∵∠B=30°,
∴PB=2PE=n mile.
故选B.
3、A
【解析】
根据一元二次方程根与系数的关系和整体代入思想即可得解.
【详解】
∵x1,x2是关于x的方程x2+bx﹣3=0的两根,
∴x1+x2=﹣b,x1x2=﹣3,
∴x1+x2﹣3x1x2=﹣b+9=5,
解得b=4.
故选A.
【点睛】
本题主要考查一元二次方程的根与系数的关系(韦达定理),
韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=,x1x2=.
4、B
【解析】
试题解析:方差越小,波动越小.
数据B的波动小一些.
故选B.
点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
5、D
【解析】
根据三角形的中位线定理即可得到结果.
【详解】
解:由题意得AB=2DE=20cm,
故选D.
【点睛】
本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
6、C
【解析】
解:A.小丽从家到达公园共用时间20分钟,正确;
B.公园离小丽家的距离为2000米,正确;
C.小丽在便利店时间为15﹣10=5分钟,错误;
D.便利店离小丽家的距离为1000米,正确.
故选C.
7、D
【解析】
根据轴对称图形的概念求解.
【详解】
解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.
故选D.
【点睛】
本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形
8、B
【解析】
先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.
【详解】
解:.
故选B.
9、C
【解析】
分析:
根据每个选项所涉及的数学知识进行分析判断即可.
详解:
A选项中,“五边形的外角和为360°”是真命题,故不能选A;
B选项中,“切线垂直于经过切点的半径”是真命题,故不能选B;
C选项中,因为点(3,-2)关于y轴的对称点的坐标是(-3,-2),所以该选项中的命题是假命题,所以可以选C;
D选项中,“抛物线y=x2﹣4x+2017对称轴为直线x=2”是真命题,所以不能选D.
故选C.
点睛:熟记:(1)凸多边形的外角和都是360°;(2)切线的性质;(3)点P(a,b)关于y轴的对称点为(-a,b);(4)抛物线的对称轴是直线: 等数学知识,是正确解答本题的关键.
10、C
【解析】
试题解析:第①个图形中一共有3个菱形,3=12+2;
第②个图形中共有7个菱形,7=22+3;
第③个图形中共有13个菱形,13=32+4;
…,
第n个图形中菱形的个数为:n2+n+1;
第⑨个图形中菱形的个数92+9+1=1.
故选C.
考点:图形的变化规律.
11、D
【解析】
先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,④正确,进而得到正确说法的个数.
【详解】
解:∵DE∥CA,DF∥BA,
∴四边形AEDF是平行四边形,选项①正确;
若∠BAC=90°,
∴平行四边形AEDF为矩形,选项②正确;
若AD平分∠BAC,
∴∠EAD=∠FAD,
又DE∥CA,∴∠EDA=∠FAD,
∴∠EAD=∠EDA,
∴AE=DE,
∴平行四边形AEDF为菱形,选项③正确;
若AB=AC,AD⊥BC,
∴AD平分∠BAC,
同理可得平行四边形AEDF为菱形,选项④正确,
则其中正确的个数有4个.
故选D.
【点睛】
此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.
12、A
【解析】
把x=﹣1代入方程计算即可求出k的值.
【详解】
解:把x=﹣1代入方程得:1+2k+k2=0,
解得:k=﹣1,
故选:A.
【点睛】
此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
试题分析:首先进行通分,然后再进行因式分解,从而进行约分得出答案.原式=.
14、-1
【解析】
根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论.
【详解】
故答案为
【点睛】
本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键.
15、
【解析】
设CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,进而得出PE=a2,再根据△DEP∽△DAB,即可得到,即,可得,即可得到AB的长等于.
【详解】
如图,设CD=AB=a,则BC2=BD2-CD2=1-a2,
由折叠可得,CE=BC,BP=EP,
∴CE2=1-a2,
∴Rt△CDE中,DE2=CE2-CD2=1-2a2,
∵PE∥AB,∠A=90°,
∴∠PED=90°,
∴Rt△DEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,
∴PE=a2,
∵PE∥AB,
∴△DEP∽△DAB,
∴,即,
∴,
即a2+a-1=0,
解得(舍去),
∴AB的长等于AB=.
故答案为.
16、-1
【解析】
根据二次函数的性质将x=2代入二次函数解析式中即可.
【详解】
f(x)=x2-3x+1
f(2)= 22-32+1=-1.
故答案为-1.
【点睛】
本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.
17、-3
【解析】
-1-2=-1+(-2)=-(1+2)=-3,
故答案为-3.
18、2﹣π.
【解析】
试题分析:根据题意可得:∠O=2∠A=60°,则△OBC为等边三角形,根据∠BCD=30°可得:∠OCD=90°,OC=AC=2,则CD=,,则.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)见解析;(2)MF= NF.
【解析】
(1)连接AE,BD,先证明△ACE和△BCD全等,然后得到AE=BD,然后再通过三角形中位线证明即可.
(2)根据图(2)(3)进行合理猜想即可.
【详解】
解:(1)连接AE,BD
在△ACE和△BCD中
∴△ACE≌△BCD
∴AE=BD
又∵点M,N,F分别为AB,ED,AD的中点
∴MF=BD,NF=AE
∴MF=NF
(2) MF= NF.
方法同上.
【点睛】
本题考查了三角形全等的判定和性质以及三角形中位线的知识,做出辅助线和合理猜想是解答本题的关键.
20、(1)作图见解析;(2)⊙O的半径为.
【解析】
(1)作出相应的图形,如图所示;
(2)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.
【详解】
解:(1)作出相应的图形,如图所示(去掉线段BF即为所求).
(2)∵AD∥BC,
∴∠DAB+∠CBA=180°.
∵AE与BE分别为∠DAB与∠CBA的平分线,
∴∠EAB+∠EBA=90°,
∴∠AEB=90°.
∵AB为⊙O的直径,点F在⊙O上,
∴∠AFB=90°,∴∠FAG+∠FGA=90°.
∵AE平分∠DAB,
∴∠FAG=∠EAB,∴∠AGF=∠ABE,
∴sin∠ABE=sin∠AGF==.
∵AE=4,∴AB=5,
∴⊙O的半径为.
【点睛】
此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.
21、(1)y=1x﹣1(1)1(3)x>1
【解析】
试题分析:(1)先把A(m,1)代入正比例函数解析式可计算出m=1,然后把A(1,1)代入y=kx﹣k计算出k的值,从而得到一次函数解析式为y=1x﹣1;
(1)先确定B点坐标,然后根据三角形面积公式计算;
(3)观察函数图象得到当x>1时,直线y=kx﹣k都在y=x的上方,即函数y=kx﹣k的值大于函数y=x的值.
试题解析:(1)把A(m,1)代入y=x得m=1,则点A的坐标为(1,1),
把A(1,1)代入y=kx﹣k得1k﹣k=1,解得k=1,
所以一次函数解析式为y=1x﹣1;
(1)把x=0代入y=1x﹣1得y=﹣1,则B点坐标为(0,﹣1),
所以S△AOB=×1×1=1;
(3)自变量x的取值范围是x>1.
考点:两条直线相交或平行问题
22、(1)点B的坐标是(-5,-4);直线AB的解析式为:
(2)四边形CBED是菱形.理由见解析
【解析】
(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;
(2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.
【详解】
解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,
得. ∴点B的坐标是(-5,-4)
设直线AB的解析式为,
将 A(3,)、B(-5,-4)代入得,
, 解得:.
∴直线AB的解析式为:
(2)四边形CBED是菱形.理由如下:
点D的坐标是(3,0),点C的坐标是(-2,0).
∵ BE∥轴, ∴点E的坐标是(0,-4).
而CD =5, BE=5,且BE∥CD.
∴四边形CBED是平行四边形
在Rt△OED中,ED2=OE2+OD2,∴ ED==5,∴ED=CD.
∴□CBED是菱形
23、(1)AD=DE;(2)AD=DE,证明见解析;(3).
【解析】
试题分析:本题难度中等.主要考查学生对探究例子中的信息进行归纳总结.并能够结合三角形的性质是解题关键.
试题解析:(10分)
(1)AD=DE.
(2)AD=DE.
证明:如图2,过点D作DF//AC,交AC于点F,
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=∠ABC=60°.
又∵DF//AC,
∴∠BDF=∠BFD=60°
∴△BDF是等边三角形,BF=BD,∠BFD=60°,
∴AF=CD,∠AFD=120°.
∵EC是外角的平分线,
∠DCE=120°=∠AFD.
∵∠ADC是△ABD的外角,
∴∠ADC=∠B+∠FAD=60°+∠FAD.
∵∠ADC=∠ADE+∠EDC=60°+∠EDC,
∴∠FAD=∠EDC.
∴△AFD≌△DCE(ASA),
∴AD=DE;
(3).
考点:1.等边三角形探究题;2.全等三角形的判定与性质;3.等边三角形的判定与性质.
24、新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.
【解析】
根据题意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的长,再表示出AD的长,进而求出AB的长.
【详解】
解:如图,作CD⊥AB于点D,由题意可得:∠A=36°,∠CBD=15°,BC=1.
在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.
∵∠CBD=15°,∴BD=CD=2.
在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.111≈3.87﹣2.83=1.21≈1.2.
答:新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.
【点睛】
本题考查了坡度坡角问题,正确构建直角三角形再求出BD的长是解题的关键.
25、甲建筑物的高度约为,乙建筑物的高度约为.
【解析】
分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.
详解:如图,过点作,垂足为.
则.
由题意可知,,,,,.
可得四边形为矩形.
∴,.
在中,,
∴.
在中,,
∴.
∴ .
∴.
答:甲建筑物的高度约为,乙建筑物的高度约为.
点睛:本题考查解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.
26、(1)楼房的高度约为17.3米;(2)当α=45°时,老人仍可以晒到太阳.理由见解析.
【解析】
试题分析:(1)在Rt△ABE中,根据的正切值即可求得楼高;(2)当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大楼的影子落在台阶MC这个侧面上.即小猫仍可晒到太阳.
试题解析:解:(1)当当时,在Rt△ABE中,
∵,
∴BA=10tan60°=米.
即楼房的高度约为17.3米.
当时,小猫仍可晒到太阳.理由如下:
假设没有台阶,当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.
∵∠BFA=45°,
∴,此时的影长AF=BA=17.3米,
所以CF=AF-AC=17.3-17.2=0.1.
∴CH=CF=0.1米,
∴大楼的影子落在台阶MC这个侧面上.
∴小猫仍可晒到太阳.
考点:解直角三角形.
27、 (1)x=1;(2),;(3)
【解析】
(1)二次函数的对称轴为直线x=-,带入即可求出对称轴,
(2)在区间内发现能够取到函数的最低点,即为顶点坐标,当开口向上是,距离对称轴越远,函数值越大,所以当x=5时,函数有最大值.
(3)分类讨论,当二次函数开口向上时不满足条件,所以函数图像开口只能向下,且应该介于-1和3之间,才会使,解不等式组即可.
【详解】
(1)该二次函数图象的对称轴是直线;
(2)∵该二次函数的图象开口向上,对称轴为直线,,
∴当时,的值最大,即.
把代入,解得.
∴该二次函数的表达式为.
当时,,
∴.
(3)易知a0,
∵当时,均有,
∴,解得
∴的取值范围.
【点睛】
本题考查了二次函数的对称轴,定区间内求函数值域,以及二次函数图像的性质,难度较大,综合性强,熟悉二次函数的单调性是解题关键.
相关试卷
这是一份江苏省扬州市宝应县重点名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
这是一份江苏省扬州市翠岗中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了下列实数中,在2和3之间的是,下列各数中,最小的数是,若正比例函数y=mx,如果,那么等内容,欢迎下载使用。
这是一份2022年江苏省扬州市仙城联合体中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了方程的根是等内容,欢迎下载使用。