终身会员
搜索
    上传资料 赚现金

    2022年江苏省扬州市高邮市汪曾祺校中考数学最后冲刺浓缩精华卷含解析

    立即下载
    加入资料篮
    2022年江苏省扬州市高邮市汪曾祺校中考数学最后冲刺浓缩精华卷含解析第1页
    2022年江苏省扬州市高邮市汪曾祺校中考数学最后冲刺浓缩精华卷含解析第2页
    2022年江苏省扬州市高邮市汪曾祺校中考数学最后冲刺浓缩精华卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省扬州市高邮市汪曾祺校中考数学最后冲刺浓缩精华卷含解析

    展开

    这是一份2022年江苏省扬州市高邮市汪曾祺校中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了答题时请按要求用笔,点P等内容,欢迎下载使用。
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列图形中,可以看作是中心对称图形的是( )
    A.B.C.D.
    2.二元一次方程组的解是( )
    A.B.C.D.
    3.如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于于x轴对称的△A2B2C2,则点B的对应点B2的坐标是( )
    A.(﹣3,2)B.(2,﹣3)C.(1,2)D.(﹣1,﹣2)
    4.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子( )
    A.1颗B.2颗C.3颗D.4颗
    5.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是( )
    A.AF=CFB.∠DCF=∠DFC
    C.图中与△AEF相似的三角形共有5个D.tan∠CAD=
    6.(﹣1)0+|﹣1|=( )
    A.2 B.1 C.0 D.﹣1
    7.点P(﹣2,5)关于y轴对称的点的坐标为( )
    A.(2,﹣5)B.(5,﹣2)C.(﹣2,﹣5)D.(2,5)
    8.如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若也在格点上,且∠AED=∠ACD,则∠AEC 度数为 ( )
    A.75°B.60°C.45°D.30°
    9.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )
    A.94分,96分B.96分,96分
    C.94分,96.4分D.96分,96.4分
    10.如图,若AB∥CD,则α、β、γ之间的关系为( )
    A.α+β+γ=360°B.α﹣β+γ=180°
    C.α+β﹣γ=180°D.α+β+γ=180°
    二、填空题(共7小题,每小题3分,满分21分)
    11.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________.
    12.函数y=中,自变量x的取值范围是_________.
    13.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.
    14.如图,在平面直角坐标系中,已知C(1,),△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则点F的坐标为_____.
    15.如图,△ABC中,AB=AC,以AC为斜边作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分别是BC、AC的中点,则∠EDF等于__________°.
    16.如图,在平面直角坐标系中,△的顶点、在坐标轴上,点的坐标是(2,2).将△ABC沿轴向左平移得到△A1B1C1,点落在函数y=-.如果此时四边形的面积等于,那么点的坐标是________.
    17.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)
    三、解答题(共7小题,满分69分)
    18.(10分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.
    (1)判断直线EF与⊙O的位置关系,并说明理由;
    (2)若∠A=30°,求证:DG=DA;
    (3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.
    19.(5分)将二次函数的解析式化为的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.
    20.(8分)如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.
    (1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率;
    (2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”.请你用列表法(或画树状图)求小宇“略胜一筹”的概率.
    21.(10分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.
    (1)判断直线l与⊙O的位置关系,并说明理由;
    (2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;
    (3)在(2)的条件下,若DE=4,DF=3,求AF的长.
    22.(10分)如图,在Rt△ABC中,∠C=90°,O、D分别为AB、AC上的点,经过A、D两点的⊙O分别交于AB、AC于点E、F,且BC与⊙O相切于点D.
    (1)求证:;
    (2)当AC=2,CD=1时,求⊙O的面积.
    23.(12分)新定义:如图1(图2,图3),在△ABC中,把AB边绕点A顺时针旋转,把AC边绕点A逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC是△AB′C′的“旋补三角形”,△AB'C′的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”
    (特例感知)(1)①若△ABC是等边三角形(如图2),BC=1,则AD= ;
    ②若∠BAC=90°(如图3),BC=6,AD= ;
    (猜想论证)(2)在图1中,当△ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;
    (拓展应用)(3)如图1.点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且△APD是△BPC的“旋补三角形”,点P是“旋补中心”,请确定点P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长.
    24.(14分)先化简,后求值:(1﹣)÷(),其中a=1.
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    分析:根据中心对称的定义,结合所给图形即可作出判断.
    详解:A、是中心对称图形,故本选项正确;
    B、不是中心对称图形,故本选项错误;
    C、不是中心对称图形,故本选项错误;
    D、不是中心对称图形,故本选项错误;
    故选:A.
    点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.
    2、B
    【解析】
    利用加减消元法解二元一次方程组即可得出答案
    【详解】
    解:①﹣②得到y=2,把y=2代入①得到x=4,
    ∴,
    故选:B.
    【点睛】
    此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.
    3、D
    【解析】
    首先利用平移的性质得到△A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到△A2B2C2中B2的坐标,即可得出答案.
    【详解】
    解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),
    则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(-1,-2),
    故选D.
    【点睛】
    此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.
    4、B
    【解析】
    试题解析:由题意得,
    解得:.
    故选B.
    5、D
    【解析】
    由 又AD∥BC,所以 故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=
    BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;
    根据相似三角形的判定即可求解,故C正确,不符合题意;
    由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.
    【详解】
    A.∵AD∥BC,
    ∴△AEF∽△CBF,


    ∴,故A正确,不符合题意;
    B. 过D作DM∥BE交AC于N,
    ∵DE∥BM,BE∥DM,
    ∴四边形BMDE是平行四边形,

    ∴BM=CM,
    ∴CN=NF,
    ∵BE⊥AC于点F,DM∥BE,
    ∴DN⊥CF,
    ∴DF=DC,
    ∴∠DCF=∠DFC,故B正确,不符合题意;
    C. 图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意;
    D. 设AD=a,AB=b,由△BAE∽△ADC,有
    ∵tan∠CAD 故D错误,符合题意.
    故选:D.
    【点睛】
    考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键.
    6、A
    【解析】
    根据绝对值和数的0次幂的概念作答即可.
    【详解】
    原式=1+1=2
    故答案为:A.
    【点睛】
    本题考查的知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.
    7、D
    【解析】
    根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.
    【详解】
    点关于y轴对称的点的坐标为,
    故选:D.
    【点睛】
    本题主要考查了平面直角坐标系中点的对称,熟练掌握点的对称特点是解决本题的关键.
    8、B
    【解析】
    将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出△CME为等边三角形,进而即可得出∠AEC的值.
    【详解】
    将圆补充完整,找出点E的位置,如图所示.
    ∵弧AD所对的圆周角为∠ACD、∠AEC,
    ∴图中所标点E符合题意.
    ∵四边形∠CMEN为菱形,且∠CME=60°,
    ∴△CME为等边三角形,
    ∴∠AEC=60°.
    故选B.
    【点睛】
    本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键.
    9、D
    【解析】
    解:总人数为6÷10%=60(人),
    则91分的有60×20%=12(人),
    98分的有60-6-12-15-9=18(人),
    第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;
    这些职工成绩的平均数是(92×6+91×12+96×15+98×18+100×9)÷60
    =(552+1128+1110+1761+900)÷60
    =5781÷60
    =96.1.
    故选D.
    【点睛】
    本题考查1.中位数;2.扇形统计图;3.条形统计图;1.算术平均数,掌握概念正确计算是关键.
    10、C
    【解析】
    过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.
    【详解】
    解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,
    ∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,
    ∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.
    故选:C.
    【点睛】
    本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.
    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    先求出球的总数,再根据概率公式求解即可.
    【详解】
    ∵不透明的袋子里装有2个白球,1个红球,
    ∴球的总数=2+1=3,
    ∴从袋子中随机摸出1个球,则摸出白球的概率=.
    故答案为.
    【点睛】
    本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.
    12、x≤1且x≠﹣1
    【解析】
    由二次根式中被开方数为非负数且分母不等于零求解可得结论.
    【详解】
    根据题意,得:,解得:x≤1且x≠﹣1.
    故答案为x≤1且x≠﹣1.
    【点睛】
    本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (1)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负.
    13、22.5
    【解析】
    ∵ABCD是正方形,
    ∴∠DBC=∠BCA=45°,
    ∵BP=BC,
    ∴∠BCP=∠BPC=(180°-45°)=67.5°,
    ∴∠ACP度数是67.5°-45°=22.5°
    14、(,)
    【解析】
    根据相似三角形的性质求出相似比,根据位似变换的性质计算即可.
    【详解】
    解:∵△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,
    则△DEF的边长是△ABC边长的倍,
    ∴点F的坐标为(1×,×),即(,),
    故答案为:(,).
    【点睛】
    本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.
    15、
    【解析】
    E、F分别是BC、AC的中点.

    ∠CAB=26°



    ∠CAD =26°





    !
    16、 (-5, )
    【解析】
    分析:依据点B的坐标是(2,2),BB2∥AA2,可得点B2的纵坐标为2,再根据点B2落在函数y=﹣的图象上,即可得到BB2=AA2=5=CC2,依据四边形AA2C2C的面积等于,可得OC=,进而得到点C2的坐标是(﹣5,).
    详解:如图,∵点B的坐标是(2,2),BB2∥AA2,∴点B2的纵坐标为2.又∵点B2落在函数y=﹣的图象上,∴当y=2时,x=﹣3,∴BB2=AA2=5=CC2.又∵四边形AA2C2C的面积等于,∴AA2×OC=,∴OC=,∴点C2的坐标是(﹣5,).
    故答案为(﹣5,).

    点睛:本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的性质.在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度.
    17、5
    【解析】
    如图,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性质求出BC即可.
    【详解】
    如图,作BH⊥AC于H.
    在Rt△ABH中,∵AB=10海里,∠BAH=30°,
    ∴∠ABH=60°,BH=AB=5(海里),
    在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),
    ∴BH=CH=5海里,
    ∴CB=5(海里).
    故答案为:5.
    【点睛】
    本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.
    三、解答题(共7小题,满分69分)
    18、(1)EF是⊙O的切线,理由详见解析;(1)详见解析;(3)⊙O的半径的长为1.
    【解析】
    (1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠
    OEG=90°,即可得到结论;
    (1)根据含30°的直角三角形的性质证明即可;
    (3)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得
    ∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.
    【详解】
    解:(1)连接OE,
    ∵OA=OE,
    ∴∠A=∠AEO,
    ∵BF=EF,
    ∴∠B=∠BEF,
    ∵∠ACB=90°,
    ∴∠A+∠B=90°,
    ∴∠AEO+∠BEF=90°,
    ∴∠OEG=90°,
    ∴EF是⊙O的切线;
    (1)∵∠AED=90°,∠A=30°,
    ∴ED=AD,
    ∵∠A+∠B=90°,
    ∴∠B=∠BEF=60°,
    ∵∠BEF+∠DEG=90°,
    ∴∠DEG=30°,
    ∵∠ADE+∠A=90°,
    ∴∠ADE=60°,
    ∵∠ADE=∠EGD+∠DEG,
    ∴∠DGE=30°,
    ∴∠DEG=∠DGE,
    ∴DG=DE,
    ∴DG=DA;
    (3)∵AD是⊙O的直径,
    ∴∠AED=90°,
    ∵∠A=30°,
    ∴∠EOD=60°,
    ∴∠EGO=30°,
    ∵阴影部分的面积
    解得:r1=4,即r=1,
    即⊙O的半径的长为1.
    【点睛】
    本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.
    19、开口方向:向上;点坐标:(-1,-3);称轴:直线.
    【解析】
    将二次函数一般式化为顶点式,再根据a的值即可确定该函数图像的开口方向、顶点坐标和对称轴.
    【详解】
    解:,


    ∴开口方向:向上,顶点坐标:(-1,-3),对称轴:直线.
    【点睛】
    熟练掌握将一般式化为顶点式是解题关键.
    20、(1);(2)P(小宇“略胜一筹”)=.
    【解析】
    分析:
    (1)由题意可知,小宇从甲箱中任意摸出一个球,共有3种等可能结果出现,其中结果为3的只有1种,由此可得小宇从甲箱中任取一个球,刚好摸到“标有数字3”的概率为;
    (2)根据题意通过列表的方式列举出小宇和小静摸球的所有等可能结果,然后根据表中结果进行解答即可.
    详解:
    (1)P(摸出标有数字是3的球)=.
    (2)小宇和小静摸球的所有结果如下表所示:
    从上表可知,一共有九种可能,其中小宇所摸球的数字比小静的大1的有一种,因此
    P(小宇“略胜一筹”)=.
    点睛:能正确通过列表的方式列举出小宇在甲箱中任摸一个球和小静在乙箱中任摸一个球的所有等可能结果,是正确解答本题第2小题的关键.
    21、(1)直线l与⊙O相切;(2)证明见解析;(3).
    【解析】
    试题分析:(1)连接OE、OB、OC.由题意可证明,于是得到∠BOE=∠COE,由等腰三角形三线合一的性质可证明OE⊥BC,于是可证明OE⊥l,故此可证明直线l与⊙O相切;
    (2)先由角平分线的定义可知∠ABF=∠CBF,然后再证明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依据等角对等边证明BE=EF即可;
    (3)先求得BE的长,然后证明△BED∽△AEB,由相似三角形的性质可求得AE的长,于是可得到AF的长.
    试题解析:(1)直线l与⊙O相切.理由如下:
    如图1所示:连接OE、OB、OC.
    ∵AE平分∠BAC,
    ∴∠BAE=∠CAE.
    ∴.
    ∴∠BOE=∠COE.
    又∵OB=OC,
    ∴OE⊥BC.
    ∵l∥BC,
    ∴OE⊥l.
    ∴直线l与⊙O相切.
    (2)∵BF平分∠ABC,
    ∴∠ABF=∠CBF.
    又∵∠CBE=∠CAE=∠BAE,
    ∴∠CBE+∠CBF=∠BAE+∠ABF.
    又∵∠EFB=∠BAE+∠ABF,
    ∴∠EBF=∠EFB.
    ∴BE=EF.
    (3)由(2)得BE=EF=DE+DF=1.
    ∵∠DBE=∠BAE,∠DEB=∠BEA,
    ∴△BED∽△AEB.
    ∴,即,解得;AE=,
    ∴AF=AE﹣EF=﹣1=.
    考点:圆的综合题.
    22、(1)证明见解析;(2).
    【解析】
    (1)连接OD,由BC为圆O的切线,得到OD垂直于BC,再由AC垂直于BC,得到OD与AC平行,利用两直线平行得到一对内错角相等,再由OA=OD,利用等边对等角得到一对角相等,等量代换得到AD为角平分线,利用相等的圆周角所对的弧相等即可得证;
    (2)连接ED,在直角三角形ACD中,由AC与CD的长,利用勾股定理求出AD的长,由(1)得出的两个圆周角相等,及一对直角相等得到三角形ACD与三角形ADE相似,由相似得比例求出AE的长,进而求出圆的半径,即可求出圆的面积.
    【详解】
    证明:连接OD,
    ∵BC为圆O的切线,
    ∴OD⊥CB,
    ∵AC⊥CB,
    ∴OD∥AC,
    ∴∠CAD=∠ODA,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∴∠CAD=∠OAD,
    则 ;
    (2)解:连接ED,
    在Rt△ACD中,AC=2,CD=1,
    根据勾股定理得:AD= ,
    ∵∠CAD=∠OAD,∠ACD=∠ADE=90°,
    ∴△ACD∽△ADE,
    ∴,即AD2=AC•AE,
    ∴AE=,即圆的半径为 ,
    则圆的面积为 .
    【点睛】
    此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及勾股定理,熟练掌握相关性质是解本题的关键.
    23、(1)①2;②3;(2)AD=BC;(3)作图见解析;BC=4;
    【解析】
    (1)①根据等边三角形的性质可得出AB=AC=1、∠BAC=60,结合“旋补三角形”的定义可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三线合一可得出∠ADC′=90°,通过解直角三角形可求出AD的长度;
    ②由“旋补三角形”的定义可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,进而可得出△ABC≌△AB′C′(SAS),根据全等三角形的性质可得出B′C′=BC=6,再利用直角三角形斜边上的中线等于斜边的一半即可求出AD的长度;(2)AD=BC,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形,根据平行四边形的性质结合“旋补三角形”的定义可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,进而可证出△BAC≌△AB′E(SAS),根据全等三角形的性质可得出BC=AE,由平行四边形的对角线互相平分即可证出AD=BC;(3)作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外角圆圆心,过点P作PF⊥BC于点F,由(2)的结论可求出PF的长度,在Rt△BPF中,利用勾股定理可求出BF的长度,进而可求出BC的长度.
    【详解】
    (1)①∵△ABC是等边三角形,BC=1,
    ∴AB=AC=1,∠BAC=60,
    ∴AB′=AC′=1,∠B′AC′=120°.
    ∵AD为等腰△AB′C′的中线,
    ∴AD⊥B′C′,∠C′=30°,
    ∴∠ADC′=90°.
    在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,
    ∴AD=AC′=2.
    ②∵∠BAC=90°,
    ∴∠B′AC′=90°.
    在△ABC和△AB′C′中,,
    ∴△ABC≌△AB′C′(SAS),
    ∴B′C′=BC=6,
    ∴AD=B′C′=3.
    故答案为:①2;②3.
    (2)AD=BC.
    证明:在图1中,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形.
    ∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,
    ∴∠BAC=∠AB′E.
    在△BAC和△AB′E中,,
    ∴△BAC≌△AB′E(SAS),
    ∴BC=AE.
    ∵AD=AE,
    ∴AD=BC.
    (3)在图1中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外接圆圆心,过点P作PF⊥BC于点F.
    ∵PB=PC,PF⊥BC,
    ∴PF为△PBC的中位线,
    ∴PF=AD=3.
    在Rt△BPF中,∠BFP=90°,PB=5,PF=3,
    ∴BF==1,
    ∴BC=2BF=4.
    【点睛】
    本题考查了等边三角形的性质、等腰三角形的判定与性质、平行四边形的性质、解直角三角形、勾股定理以及全等三角形的判定与性质,解题的关键是:(1)①利用解含30°角的直角三角形求出AD=AC′;②牢记直角三角形斜边上的中线等于斜边的一半;(2)构造平行四边形,利用平行四边形对角线互相平分找出AD=AE=BC;(3)利用(2)的结论结合勾股定理求出BF的长度.
    24、,2.
    【解析】
    先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.
    【详解】
    解:原式=

    当a=1时,
    原式==2.
    【点睛】
    本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
    小静
    小宇
    4
    5
    6
    3
    (3,4)
    (3,5)
    (3,6)
    4
    (4,4)
    (4,5)
    (4,6)
    5
    (5,4)
    (5,5)
    (5,6)

    相关试卷

    江苏省扬州市高邮市汪曾祺校2022年中考考前最后一卷数学试卷含解析:

    这是一份江苏省扬州市高邮市汪曾祺校2022年中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,化简的结果是,下列计算结果等于0的是,下列方程中,没有实数根的是等内容,欢迎下载使用。

    江苏省扬州市翠岗中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析:

    这是一份江苏省扬州市翠岗中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了下列实数中,在2和3之间的是,下列各数中,最小的数是,若正比例函数y=mx,如果,那么等内容,欢迎下载使用。

    2022年江苏省扬州市仙城联合体中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年江苏省扬州市仙城联合体中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了方程的根是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map