|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年江苏省扬州市邗江实验重点名校中考数学最后冲刺浓缩精华卷含解析
    立即下载
    加入资料篮
    2021-2022学年江苏省扬州市邗江实验重点名校中考数学最后冲刺浓缩精华卷含解析01
    2021-2022学年江苏省扬州市邗江实验重点名校中考数学最后冲刺浓缩精华卷含解析02
    2021-2022学年江苏省扬州市邗江实验重点名校中考数学最后冲刺浓缩精华卷含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省扬州市邗江实验重点名校中考数学最后冲刺浓缩精华卷含解析

    展开
    这是一份2021-2022学年江苏省扬州市邗江实验重点名校中考数学最后冲刺浓缩精华卷含解析,共25页。试卷主要包含了估计介于等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是( )

    A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°
    2.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是( )

    A.甲的速度是70米/分 B.乙的速度是60米/分
    C.甲距离景点2100米 D.乙距离景点420米
    3.下列条件中不能判定三角形全等的是( )
    A.两角和其中一角的对边对应相等 B.三条边对应相等
    C.两边和它们的夹角对应相等 D.三个角对应相等
    4.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为(  )

    A.6 B.9 C.11 D.无法计算
    5.估计介于( )
    A.0与1之间 B.1与2之间 C.2与3之间 D.3与4之间
    6.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为(  )

    A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)
    7.一次函数与反比例函数在同一个坐标系中的图象可能是(  )
    A. B. C. D.
    8.若式子在实数范围内有意义,则 x的取值范围是( )
    A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1
    9.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为( )

    A.10cm B.20cm C.10πcm D.20πcm
    10.如图,数轴上表示的是下列哪个不等式组的解集(  )

    A. B. C. D.
    11.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为(  )
    A.6.7×106 B.6.7×10﹣6 C.6.7×105 D.0.67×107
    12.二次函数y=ax2+bx﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a﹣b﹣2,则t值的变化范围是(  )
    A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<0
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在2×4的正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC的顶点都在格点上,将△ABC绕着点C按顺时针方向旋转一定角度后,得到△A'B'C',点A'、B'在格点上,则点A走过的路径长为_____(结果保留π)

    14.观察下列的“蜂窝图”按照它呈现的规律第n个图案中的“”的个数是_____(用含n的代数式表示)

    15.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限,若反比例函数的图象经过点B,则k的值是_____.

    16.一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为______.
    17.已知一个斜坡的坡度,那么该斜坡的坡角的度数是______.
    18.如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,∠AEP=90°,且EP交正方形外角的平分线CP于点P,则PC的长为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.

    (1)求证:BN平分∠ABE;
    (2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;
    (3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.
    20.(6分)如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2.
    (1)求反比例函数的解析式.
    (2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.

    21.(6分)如图,抛物线(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.
    求抛物线的解析式;抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.
    22.(8分)如图,BD是矩形ABCD的一条对角线.
    (1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);
    (2)求证:DE=BF.

    23.(8分)已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E
    (Ⅰ)如图①,求∠CED的大小;
    (Ⅱ)如图②,当DE=BE时,求∠C的大小.

    24.(10分)如图,AB∥CD,∠1=∠2,求证:AM∥CN

    25.(10分)如图,AB为☉O的直径,CD与☉O相切于点E,交AB的延长线于点D,连接BE,过点O作OC∥BE,交☉O于点F,交切线于点C,连接AC.

    (1)求证:AC是☉O的切线;
    (2)连接EF,当∠D= °时,四边形FOBE是菱形.
    26.(12分)如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O交于点E,OB与⊙O交于点F和D,连接EF,CF,CF与OA交于点G
    (1)求证:直线AB是⊙O的切线;
    (2)求证:△GOC∽△GEF;
    (3)若AB=4BD,求sinA的值.

    27.(12分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.

    (1)按如下分数段整理、描述这两组数据:
    成绩x
    学生
    70≤x≤74
    75≤x≤79
    80≤x≤84
    85≤x≤89
    90≤x≤94
    95≤x≤100

    ______
    ______
    ______
    ______
    ______
    ______

    1
    1
    4
    2
    1
    1
    (2)两组数据的极差、平均数、中位数、众数、方差如下表所示:
    学生
    极差
    平均数
    中位数
    众数
    方差

    ______
    83.7
    ______
    86
    13.21

    24
    83.7
    82
    ______
    46.21
    (3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.
    【详解】
    A.∵∠3=∠A,
    本选项不能判断AB∥CD,故A错误;
    B.∵∠D=∠DCE,
    ∴AC∥BD.
    本选项不能判断AB∥CD,故B错误;
    C.∵∠1=∠2,
    ∴AB∥CD.
    本选项能判断AB∥CD,故C正确;
    D.∵∠D+∠ACD=180°,
    ∴AC∥BD.
    故本选项不能判断AB∥CD,故D错误.
    故选:C.
    【点睛】
    考查平行线的判定,掌握平行线的判定定理是解题的关键.
    2、D
    【解析】
    根据图中信息以及路程、速度、时间之间的关系一一判断即可.
    【详解】
    甲的速度==70米/分,故A正确,不符合题意;
    设乙的速度为x米/分.则有,660+24x-70×24=420,
    解得x=60,故B正确,本选项不符合题意,
    70×30=2100,故选项C正确,不符合题意,
    24×60=1440米,乙距离景点1440米,故D错误,
    故选D.
    【点睛】
    本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.
    3、D
    【解析】
    解:A、符合AAS,能判定三角形全等;
    B、符合SSS,能判定三角形全等;;
    C、符合SAS,能判定三角形全等;
    D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;
    故选D.
    4、B
    【解析】
    有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时, S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.
    【详解】
    把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,
    ∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,
    ∴C、B、H'在一直线上,且AB为△ACH'的中线,
    ∴S△BEI=S△ABH′=S△ABC,
    同理:S△CDF=S△ABC,
    当∠BAC=90°时,
    S△ABC的面积最大,
    S△BEI=S△CDF=S△ABC最大,
    ∵∠ABC=∠CBG=∠ABI=90°,
    ∴∠GBE=90°,
    ∴S△GBI=S△ABC,
    所以阴影部分面积之和为S△ABC的3倍,
    又∵AB=2,AC=3,
    ∴图中阴影部分的最大面积为3× ×2×3=9,
    故选B.
    【点睛】
    本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3 倍是解题的关键.
    5、C
    【解析】
    解:∵,
    ∴,即
    ∴估计在2~3之间
    故选C.
    【点睛】
    本题考查估计无理数的大小.
    6、A
    【解析】
    作AD⊥y轴于D,作CE⊥y轴于E,则∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性质得出OC=AO,∠1+∠3=90°,证出∠3=∠1,由AAS证明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出结果.
    【详解】
    解:作AD⊥y轴于D,作CE⊥y轴于E,如图所示:

    则∠ADO=∠OEC=90°,∴∠1+∠1=90°.
    ∵AO=1,AD=1,∴OD=,∴点A的坐标为(1,),∴AD=1,OD=.
    ∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.
    在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴点C的坐标为(,﹣1).
    故选A.
    【点睛】
    本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键.
    7、B
    【解析】
    当k>0时,一次函数y=kx﹣k的图象过一、三、四象限,反比例函数y=的图象在一、三象限,∴A、C不符合题意,B符合题意;当k<0时,一次函数y=kx﹣k的图象过一、二、四象限,反比例函数y=的图象在二、四象限,∴D不符合题意.
    故选B.
    8、A
    【解析】
    直接利用二次根式有意义的条件分析得出答案.
    【详解】
    ∵式子在实数范围内有意义,
    ∴ x﹣1>0, 解得:x>1.
    故选:A.
    【点睛】
    此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
    9、A
    【解析】
    试题解析:扇形的弧长为:=20πcm,
    ∴圆锥底面半径为20π÷2π=10cm,
    故选A.
    考点:圆锥的计算.
    10、B
    【解析】
    根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.
    【详解】
    解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥-3,
    A、不等式组的解集为x>-3,故A错误;
    B、不等式组的解集为x≥-3,故B正确;
    C、不等式组的解集为x<-3,故C错误;
    D、不等式组的解集为-3<x<5,故D错误.
    故选B.
    【点睛】
    本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键.
    11、A
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:6 700 000=6.7×106,
    故选:A
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    12、D
    【解析】
    由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a与b的符号,进而求出t=a-b-2的变化范围.
    【详解】
    解:∵二次函数y=ax2+bx-2的顶点在第三象限,且经过点(1,0)
    ∴该函数是开口向上的,a>0
    ∵y=ax2+bx﹣2过点(1,0),
    ∴a+b-2=0.
    ∵a>0,
    ∴2-b>0.
    ∵顶点在第三象限,
    ∴-<0.
    ∴b>0.
    ∴2-a>0.
    ∴0 ∴0 ∴t=a-b-2.
    ∴﹣4<t<0.
    【点睛】
    本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    分析:连接AA′,根据勾股定理求出AC=AC′,及AA′的长,然后根据勾股定理的逆定理得出△ACA′为等腰直角三角形,然后根据弧长公式求解即可.
    详解:连接AA′,如图所示.
    ∵AC=A′C=,AA′=,
    ∴AC2+A′C2=AA′2,
    ∴△ACA′为等腰直角三角形,
    ∴∠ACA′=90°,
    ∴点A走过的路径长=×2πAC=π.
    故答案为:π.

    点睛:本题主要考查了几何变换的类型以及勾股定理及逆定理的运用,弧长公式,解题时注意:在旋转变换下,对应线段相等.解决问题的关键是找出变换的规律,根据弧长公式求解.
    14、3n+1
    【解析】
    根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律.
    【详解】
    解:由题意可知:每1个都比前一个多出了3个“”,
    ∴第n个图案中共有“”为:4+3(n﹣1)=3n+1
    故答案为:3n+1.
    【点睛】
    本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型.
    15、.
    【解析】
    已知△ABO是等边三角形,通过作高BC,利用等边三角形的性质可以求出OB和OC的长度;由于Rt△OBC中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC的长度,进而确定点B的坐标;将点B的坐标代入反比例函数的解析式中,即可求出k的值.
    【详解】
    过点B作BC垂直OA于C,
    ∵点A的坐标是(2,0),
    ∴AO=2,
    ∵△ABO是等边三角形,
    ∴OC=1,BC=,
    ∴点B的坐标是
    把代入,得
    故答案为.

    【点睛】
    考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标;
    16、1.
    【解析】解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+1+1+3+3+c)÷7=1,解得c=0,将这组数据按从小到大的顺序排列:0、1、1、1、3、3、3,位于最中间的一个数是1,所以中位数是1,故答案为:1.
    点睛:本题为统计题,考查平均数、众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
    17、
    【解析】
    坡度=坡角的正切值,据此直接解答.
    【详解】
    解:∵,
    ∴坡角=30°.
    【点睛】
    此题主要考查学生对坡度及坡角的理解及掌握.
    18、
    【解析】
    在AB上取BN=BE,连接EN,根据已知及正方形的性质利用ASA判定△ANE≌△ECP,从而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解决问题.
    【详解】
    在AB上取BN=BE,连接EN,作PM⊥BC于M.

    ∵四边形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.
    ∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.
    ∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.
    ∵AB=BC,BN=BE,∴AN=EC.
    ∵∠AEP=90°,∴∠AEB+∠PEC=90°.
    ∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.
    ∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.
    故答案为:.
    【点睛】
    本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2);(3)证明见解析.
    【解析】
    分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三线合一知AM⊥BC,从而根据∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN为等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得证;
    (2)设BM=CM=MN=a,知DN=BC=2a,证△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,从而得出答案;
    (3)F是AB的中点知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由即可得证.
    详解:(1)∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵M为BC的中点,
    ∴AM⊥BC,
    在Rt△ABM中,∠MAB+∠ABC=90°,
    在Rt△CBE中,∠EBC+∠ACB=90°,
    ∴∠MAB=∠EBC,
    又∵MB=MN,
    ∴△MBN为等腰直角三角形,
    ∴∠MNB=∠MBN=45°,
    ∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,
    ∴∠NBE=∠ABN,即BN平分∠ABE;
    (2)设BM=CM=MN=a,
    ∵四边形DNBC是平行四边形,
    ∴DN=BC=2a,
    在△ABN和△DBN中,
    ∵,
    ∴△ABN≌△DBN(SAS),
    ∴AN=DN=2a,
    在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,
    解得:a=±(负值舍去),
    ∴BC=2a=;
    (3)∵F是AB的中点,
    ∴在Rt△MAB中,MF=AF=BF,
    ∴∠MAB=∠FMN,
    又∵∠MAB=∠CBD,
    ∴∠FMN=∠CBD,
    ∵,
    ∴,
    ∴△MFN∽△BDC.
    点睛:本题主要考查相似形的综合问题,解题的关键是掌握等腰三角形三线合一的性质、直角三角形和平行四边形的性质及全等三角形与相似三角形的判定与性质等知识点.
    20、(1);(2)P(0,6)
    【解析】
    试题分析:(1)先求得点A的坐标,再利用待定系数法求得反比例函数的解析式即可;(2)连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC 试题解析:
    令一次函数中,则,
    解得:,即点A的坐标为(-4,2).
    ∵点A(-4,2)在反比例函数的图象上,
    ∴k=-4×2=-8,
    ∴反比例函数的表达式为.
    连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC 设平移后直线于x轴交于点F,则F(6,0)
    设平移后的直线解析式为,
    将F(6,0)代入得:b=3
    ∴直线CF解析式:
    令3=,解得:,
    ∴C(-2,4)
    ∵A、C两点坐标分别为A(-4,2)、C(-2,4)
    ∴直线AC的表达式为,
    此时,P点坐标为P(0,6).
    点睛:本题是一次函数与反比例函数的综合题,主要考查了用待定系数法求函数的解析式、一次函数与反比例函数的交点坐标,熟练运用一次函数及反比例函数的性质是解题的关键.
    21、(1)抛物线的解析式为;(2)PM=(0<m<3);(3)存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.
    【解析】
    (1)将A(3,0),C(0,4)代入,运用待定系数法即可求出抛物线的解析式.
    (2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,从而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长.
    (3)由于∠PFC和∠AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和△AEM相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM的形状.
    【详解】
    解:(1)∵抛物线(a≠0)经过点A(3,0),点C(0,4),
    ∴,解得.
    ∴抛物线的解析式为.
    (2)设直线AC的解析式为y=kx+b,
    ∵A(3,0),点C(0,4),
    ∴,解得.
    ∴直线AC的解析式为.
    ∵点M的横坐标为m,点M在AC上,
    ∴M点的坐标为(m,).
    ∵点P的横坐标为m,点P在抛物线上,
    ∴点P的坐标为(m,).
    ∴PM=PE-ME=()-()=.
    ∴PM=(0<m<3).
    (3)在(2)的条件下,连接PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似.理由如下:
    由题意,可得AE=3﹣m,EM=,CF=m,PF==,
    若以P、C、F为顶点的三角形和△AEM相似,分两种情况:
    ①若△PFC∽△AEM,则PF:AE=FC:EM,即():(3-m)=m:(),
    ∵m≠0且m≠3,∴m=.
    ∵△PFC∽△AEM,∴∠PCF=∠AME.
    ∵∠AME=∠CMF,∴∠PCF=∠CMF.
    在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.
    ∴△PCM为直角三角形.
    ②若△CFP∽△AEM,则CF:AE=PF:EM,即m:(3-m)=():(),
    ∵m≠0且m≠3,∴m=1.
    ∵△CFP∽△AEM,∴∠CPF=∠AME.
    ∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.
    ∴△PCM为等腰三角形.
    综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.
    22、(1)作图见解析;(2)证明见解析;
    【解析】
    (1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;
    (2)利用垂直平分线证得△DEO≌△BFO即可证得结论.
    【详解】
    解:(1)如图:

    (2)∵四边形ABCD为矩形,
    ∴AD∥BC,
    ∴∠ADB=∠CBD,
    ∵EF垂直平分线段BD,
    ∴BO=DO,
    在△DEO和三角形BFO中,

    ∴△DEO≌△BFO(ASA),
    ∴DE=BF.
    考点:1.作图—基本作图;2.线段垂直平分线的性质;3.矩形的性质.
    23、(Ⅰ)68°(Ⅱ)56°
    【解析】
    (1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明∠CED=∠A即可,(2)连接AE,在Rt△AEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出∠EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.
    【详解】
    (Ⅰ)∵四边形ABED 圆内接四边形,
    ∴∠A+∠DEB=180°,
    ∵∠CED+∠DEB=180°,
    ∴∠CED=∠A,
    ∵∠A=68°,
    ∴∠CED=68°.
    (Ⅱ)连接AE.
    ∵DE=BD,
    ∴,
    ∴∠DAE=∠EAB=∠CAB=34°,
    ∵AB是直径,
    ∴∠AEB=90°,
    ∴∠AEC=90°,
    ∴∠C=90°﹣∠DAE=90°﹣34°=56°

    【点睛】
    本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题.
    24、详见解析.
    【解析】
    只要证明∠EAM=∠ECN,根据同位角相等两直线平行即可证明.
    【详解】
    证明:∵AB∥CD,
    ∴∠EAB=∠ECD,
    ∵∠1=∠2,
    ∴∠EAM=∠ECN,
    ∴AM∥CN.
    【点睛】
    本题考查平行线的判定和性质,解题的关键是熟练掌握平行线的性质和判定,属于中考基础题.
    25、(1)详见解析;(2)30.
    【解析】
    (1)利用切线的性质得∠CEO=90°,再证明△OCA≌△OCE得到∠CAO=∠CEO=90°,然后根据切线的判定定理得到结论;
    (2)利用四边形FOBE是菱形得到OF=OB=BF=EF,则可判定△OBE为等边三角形,所以∠BOE=60°,然后利用互余可确定∠D的度数.
    【详解】
    (1)证明:∵CD与⊙O相切于点E,
    ∴OE⊥CD,
    ∴∠CEO=90°,
    又∵OC∥BE,
    ∴∠COE=∠OEB,∠OBE=∠COA
    ∵OE=OB,
    ∴∠OEB=∠OBE,
    ∴∠COE=∠COA,
    又∵OC=OC,OA=OE,
    ∴△OCA≌△OCE(SAS),
    ∴∠CAO=∠CEO=90°,
    又∵AB为⊙O的直径,
    ∴AC为⊙O的切线;
    (2)∵四边形FOBE是菱形,
    ∴OF=OB=BF=EF,
    ∴OE=OB=BE,
    ∴△OBE为等边三角形,
    ∴∠BOE=60°,
    而OE⊥CD,
    ∴∠D=30°.
    【点睛】
    本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.
    26、 (1)见解析;(2)见解析;(3).
    【解析】
    (1)利用等腰三角形的性质,证明OC⊥AB即可;
    (2)证明OC∥EG,推出△GOC∽△GEF即可解决问题;
    (3)根据勾股定理和三角函数解答即可.
    【详解】
    证明:(1)∵OA=OB,AC=BC,
    ∴OC⊥AB,
    ∴⊙O是AB的切线.
    (2)∵OA=OB,AC=BC,
    ∴∠AOC=∠BOC,
    ∵OE=OF,
    ∴∠OFE=∠OEF,
    ∵∠AOB=∠OFE+∠OEF,
    ∴∠AOC=∠OEF,
    ∴OC∥EF,
    ∴△GOC∽△GEF,
    ∴,
    ∵OD=OC,
    ∴OD•EG=OG•EF.
    (3)∵AB=4BD,
    ∴BC=2BD,设BD=m,BC=2m,OC=OD=r,
    在Rt△BOC中,∵OB2=OC2+BC2,
    即(r+m)2=r2+(2m)2,
    解得:r=1.5m,OB=2.5m,
    ∴sinA=sinB=.
    【点睛】
    考查圆的综合题,考查切线的判定、等腰三角形的性质、平行线的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.
    27、(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由见解析
    【解析】
    (1)根据折线统计图数字进行填表即可;
    (2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;
    (3)可分别从平均数、方差、极差三方面进行比较.
    【详解】
    (1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,
    ∴70⩽x⩽74无,共0个;
    75⩽x⩽79之间有75,共1个;
    80⩽x⩽84之间有84,82,1,83,共4个;
    85⩽x⩽89之间有89,86,86,85,86,共5个;
    90⩽x⩽94之间和95⩽x⩽100无,共0个.
    故答案为0;1;4;5;0;0;
    (2)由图可知:甲的最高分为89分,最低分为75分,极差为89−75=14分;
    ∵甲的成绩为从低到高排列为:75,1,82,83,84,85,86,86,86,89,
    ∴中位数为(84+85)=84.5;
    ∵乙的成绩为从低到高排列为:72,76,1,1,1,83,87,89,91,96,
    1出现3次,乙成绩的众数为1.
    故答案为14;84.5;1;
    (3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.
    或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论)
    故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.
    【点睛】
    此题考查折线统计图,统计表,平均数,中位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据.

    相关试卷

    江苏省扬州市宝应县重点名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析: 这是一份江苏省扬州市宝应县重点名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    江苏省扬州市翠岗中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析: 这是一份江苏省扬州市翠岗中学2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了下列实数中,在2和3之间的是,下列各数中,最小的数是,若正比例函数y=mx,如果,那么等内容,欢迎下载使用。

    江苏省连云港市灌云县重点名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析: 这是一份江苏省连云港市灌云县重点名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共22页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map