2021-2022学年黑龙江省哈尔滨市南岗区“FF联盟”市级名校中考数学四模试卷含解析
展开1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.cs30°的值为( )
A.1 B. C. D.
2.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )
A.①②④B.①②⑤C.②③④D.③④⑤
3.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是( )
A.B.C.D.
4.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有( )
A.2个B.3个C.4个D.5个
5.在1、﹣1、3、﹣2这四个数中,最大的数是( )
A.1B.﹣1C.3D.﹣2
6.某青年排球队12名队员年龄情况如下:
则这12名队员年龄的众数、中位数分别是( )
A.20,19B.19,19C.19,20.5D.19,20
7.如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于( )
A.25:24B.16:15C.5:4D.4:3
8.如果关于x的分式方程有负分数解,且关于x的不等式组的解集为x<-2,那么符合条件的所有整数a的积是 ( )
A.-3B.0C.3D.9
9.反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:
①S△ODB=S△OCA;
②四边形OAMB的面积不变;
③当点A是MC的中点时,则点B是MD的中点.
其中正确结论的个数是( )
A.0B.1C.2D.3
10.在代数式 中,m的取值范围是( )
A.m≤3B.m≠0C.m≥3D.m≤3且m≠0
二、填空题(共7小题,每小题3分,满分21分)
11.如图,AE是正八边形ABCDEFGH的一条对角线,则∠BAE= °.
12.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为_____.(结果保留π)
13.已知关于 x 的函数 y=(m﹣1)x2+2x+m 图象与坐标轴只有 2 个交点,则m=_______.
14.⊙M的圆心在一次函数y=x+2图象上,半径为1.当⊙M与y轴相切时,点M的坐标为_____.
15.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.
(以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)
请根据上图完成这个推论的证明过程.
证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),
S矩形EBMF=S△ABC-(______________+______________).
易知,S△ADC=S△ABC,______________=______________,______________=______________.
可得S矩形NFGD=S矩形EBMF.
16.在ABCD中,AB=3,BC=4,当ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C=180;③AC⊥BD;④AC=BD.其中正确的有_________.(填序号)
17.如图,在等腰中,,点在以斜边为直径的半圆上,为的中点.当点沿半圆从点运动至点时,点运动的路径长是________.
三、解答题(共7小题,满分69分)
18.(10分)(1)计算:
(2)化简:
19.(5分)已知:如图,在矩形纸片ABCD中,,,翻折矩形纸片,使点A落在对角线DB上的点F处,折痕为DE,打开矩形纸片,并连接EF.
的长为多少;
求AE的长;
在BE上是否存在点P,使得的值最小?若存在,请你画出点P的位置,并求出这个最小值;若不存在,请说明理由.
20.(8分)解不等式组:
21.(10分)列方程解应用题:
某商场用8万元购进一批新款衬衫,上架后很快销售一空,商场又紧急购进第二批这种衬衫,数量是第一次的2倍,但进价涨了4元/件,结果共用去17.6万元.该商场第一批购进衬衫多少件?商场销售这种衬衫时,每件定价都是58元,剩至150件时按八折出售,全部售完.售完这两批衬衫,商场共盈利多少元?
22.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数 的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOB的面积;
(3)求方程的解集(请直接写出答案).
23.(12分)如图,抛物线y=﹣x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.
(1)求点A,点B的坐标;
(2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.
24.(14分)如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.
(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;
(2)若tan∠F=,CD=a,请用a表示⊙O的半径;
(3)求证:GF2﹣GB2=DF•GF.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
cs30°=.
故选D.
2、A
【解析】
由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>2.
【详解】
①∵对称轴在y轴右侧,
∴a、b异号,
∴ab<2,故正确;
②∵对称轴
∴2a+b=2;故正确;
③∵2a+b=2,
∴b=﹣2a,
∵当x=﹣1时,y=a﹣b+c<2,
∴a﹣(﹣2a)+c=3a+c<2,故错误;
④根据图示知,当m=1时,有最大值;
当m≠1时,有am2+bm+c≤a+b+c,
所以a+b≥m(am+b)(m为实数).
故正确.
⑤如图,当﹣1<x<3时,y不只是大于2.
故错误.
故选A.
【点睛】
本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定
抛物线的开口方向,当a>2时,抛物线向上开口;当a<2时,抛物线向下开口;②一次项
系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>2),对称轴在y轴
左; 当a与b异号时(即ab<2),对称轴在y轴右.(简称:左同右异)③常数项c决定抛
物线与y轴交点,抛物线与y轴交于(2,c).
3、D
【解析】
由题意知:△ABC≌△DEC,
∴∠ACB=∠DCE=30°,AC=DC,
∴∠DAC=(180°−∠DCA)÷2=(180°−30°)÷2=75°.
故选D.
【点睛】
本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.
4、C
【解析】
试题分析:∵在矩形ABCD中,AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∴△ABE是等腰直角三角形,
∴AE=AB,
∵AD=AB,
∴AE=AD,
又∠ABE=∠AHD=90°
∴△ABE≌△AHD(AAS),
∴BE=DH,
∴AB=BE=AH=HD,
∴∠ADE=∠AED=(180°﹣45°)=67.5°,
∴∠CED=180°﹣45°﹣67.5°=67.5°,
∴∠AED=∠CED,故①正确;
∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),
∴∠OHE=∠AED,
∴OE=OH,
∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,
∴∠OHD=∠ODH,
∴OH=OD,
∴OE=OD=OH,故②正确;
∵∠EBH=90°﹣67.5°=22.5°,
∴∠EBH=∠OHD,
又BE=DH,∠AEB=∠HDF=45°
∴△BEH≌△HDF(ASA),
∴BH=HF,HE=DF,故③正确;
由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,
∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;
∵AB=AH,∠BAE=45°,
∴△ABH不是等边三角形,
∴AB≠BH,
∴即AB≠HF,故⑤错误;
综上所述,结论正确的是①②③④共4个.
故选C.
【点睛】
考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质
5、C
【解析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:根据有理数比较大小的方法,可得
-2<-1<1<1,
∴在1、-1、1、-2这四个数中,最大的数是1.
故选C.
【点睛】
此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
6、D
【解析】
先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.
【详解】
这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为=1.
故选D.
【点睛】
本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.
7、A
【解析】
先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.
【详解】
∵∠1=∠2,∠3=∠4,
∴∠2+∠3=90°,
∴∠HEF=90°,
同理四边形EFGH的其它内角都是90°,
∴四边形EFGH是矩形,
∴EH=FG(矩形的对边相等),
又∵∠1+∠4=90°,∠4+∠5=90°,
∴∠1=∠5(等量代换),
同理∠5=∠7=∠8,
∴∠1=∠8,
∴Rt△AHE≌Rt△CFG,
∴AH=CF=FN,
又∵HD=HN,
∴AD=HF,
在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF==5,
又∵HE•EF=HF•EM,
∴EM=,
又∵AE=EM=EB(折叠后A、B都落在M点上),
∴AB=2EM=,
∴AD:AB=5:==25:1.
故选A
【点睛】
本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.
8、D
【解析】
解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合题意;
把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合题意;
把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合题意;
把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合题意;
把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合题意;
把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合题意;
把a=3代入整式方程得:﹣3x=1﹣x,即,符合题意;
把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合题意,∴符合条件的整数a取值为﹣3;﹣1;1;3,之积为1.故选D.
9、D
【解析】
根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.
【详解】
①由于A、B在同一反比例函数y=图象上,由反比例系数的几何意义可得S△ODB=S△OCA=1,正确;
②由于矩形OCMD、△ODB、△OCA为定值,则四边形MAOB的面积不会发生变化,正确;
③连接OM,点A是MC的中点,则S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面积相等,点B一定是MD的中点.正确;
故答案选D.
考点:反比例系数的几何意义.
10、D
【解析】
根据二次根式有意义的条件即可求出答案.
【详解】
由题意可知:
解得:m≤3且m≠0
故选D.
【点睛】
本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.
二、填空题(共7小题,每小题3分,满分21分)
11、67.1
【解析】
试题分析:∵图中是正八边形,
∴各内角度数和=(8﹣2)×180°=1080°,
∴∠HAB=1080°÷8=131°,
∴∠BAE=131°÷2=67.1°.
故答案为67.1.
考点:多边形的内角
12、πcm1.
【解析】
求出AD,先分别求出两个扇形的面积,再求出答案即可.
【详解】
解:∵AB长为15cm,贴纸部分的宽BD为15cm,
∴AD=10cm,
∴贴纸的面积为S=S扇形ABC﹣S扇形ADE=(cm1),
故答案为πcm1.
【点睛】
本题考查了扇形的面积计算,能熟记扇形的面积公式是解此题的关键.
13、1 或 0 或
【解析】
分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;
当函数为二次函数时,将(0,0)代入解析式即可求出m的值.
【详解】
解:(1)当 m﹣1=0 时,m=1,函数为一次函数,解析式为 y=2x+1,与 x 轴
交点坐标为(﹣ ,0);与 y 轴交点坐标(0,1).符合题意.
(2)当 m﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与 x 轴有两个不同的交点,
于是△=4﹣4(m﹣1)m>0,
解得,(m﹣)2<,
解得 m< 或 m> .
将(0,0)代入解析式得,m=0,符合题意.
(3)函数为二次函数时,还有一种情况是:与 x 轴只有一个交点,与 Y 轴交于交于另一点,
这时:△=4﹣4(m﹣1)m=0,
解得:m= .
故答案为1 或 0 或.
【点睛】
此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解.
14、(1,)或(﹣1,)
【解析】
设当⊙M与y轴相切时圆心M的坐标为(x,x+2),再根据⊙M的半径为1即可得出y的值.
【详解】
解:∵⊙M的圆心在一次函数y=x+2的图象上运动,
∴设当⊙M与y轴相切时圆心M的坐标为(x, x+2),
∵⊙M的半径为1,
∴x=1或x=−1,
当x=1时,y=,
当x=−1时,y=.
∴P点坐标为:(1, )或(−1, ).
故答案为(1, )或(−1, ).
【点睛】
本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.
15、S△AEF S△FMC S△ANF S△AEF S△FGC S△FMC
【解析】
根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.
【详解】
S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-( S△ANF+S△FCM).
易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,
可得S矩形NFGD=S矩形EBMF.
故答案分别为 S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.
【点睛】
本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.
16、①②④
【解析】
由当ABCD的面积最大时,AB⊥BC,可判定ABCD是矩形,由矩形的性质,可得②④正确,③错误,又由勾股定理求得AC=1.
【详解】
∵当ABCD的面积最大时,AB⊥BC,
∴ABCD是矩形,
∴∠A=∠C=90°,AC=BD,故③错误,④正确;
∴∠A+∠C=180°;故②正确;
∴AC==1,故①正确.
故答案为:①②④.
【点睛】
此题考查了平行四边形的性质、矩形的判定与性质以及勾股定理.注意证得▱ABCD是矩形是解此题的关键.
17、π
【解析】
取的中点,取的中点,连接,,,则,故的轨迹为以为圆心,为半径的半圆弧,根据弧长公式即可得轨迹长.
【详解】
解:如图,取的中点,取的中点,连接,,,
∵在等腰中,,点在以斜边为直径的半圆上,
∴,
∵为的中位线,
∴,
∴当点沿半圆从点运动至点时,点的轨迹为以为圆心,为半径的半圆弧,
∴弧长,
故答案为:.
【点睛】
本题考查了点的轨迹与等腰三角形的性质.解决动点问题的关键是在运动中,把握不变的等量关系(或函数关系),通过固定的等量关系(或函数关系),解决动点的轨迹或坐标问题.
三、解答题(共7小题,满分69分)
18、(1);(2)-1;
【解析】
(1)根据负整数指数幂、特殊角的三角函数、零指数幂可以解答本题;
(2)根据分式的除法和减法可以解答本题.
【详解】
(1)
=
=2-.
(2)
=
=
=
=
=-1
【点睛】
本题考查分式的混合运算、负整数指数幂、特殊角的三角函数、零指数幂,解答本题的关键是明确它们各自的计算方法.
19、(1);(2)的长为;(1)存在,画出点P的位置如图1见解析,的最小值为 .
【解析】
(1)根据勾股定理解答即可;
(2)设AE=x,根据全等三角形的性质和勾股定理解答即可;
(1)延长CB到点G,使BG=BC,连接FG,交BE于点P,连接PC,利用相似三角形的判定和性质解答即可.
【详解】
(1)∵矩形ABCD,∴∠DAB=90°,AD=BC=1.在Rt△ADB中,DB.
故答案为5;
(2)设AE=x.
∵AB=4,∴BE=4﹣x,在矩形ABCD中,根据折叠的性质知:
Rt△FDE≌Rt△ADE,∴FE=AE=x,FD=AD=BC=1,∴BF=BD﹣FD=5﹣1=2.在Rt△BEF中,根据勾股定理,得FE2+BF2=BE2,即x2+4=(4﹣x)2,解得:x,∴AE的长为;
(1)存在,如图1,延长CB到点G,使BG=BC,连接FG,交BE于点P,连接PC,则点P即为所求,此时有:PC=PG,∴PF+PC=GF.
过点F作FH⊥BC,交BC于点H,则有FH∥DC,∴△BFH∽△BDC,∴,即,∴,∴GH=BG+BH.在Rt△GFH中,根据勾股定理,得:GF,即PF+PC的最小值为.
【点睛】
本题考查了四边形的综合题,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质等知识,知识点较多,难度较大,解答本题的关键是掌握设未知数列方程的思想.
20、﹣9<x<1.
【解析】
先求每一个不等式的解集,然后找出它们的公共部分,即可得出答案.
【详解】
解不等式1(x﹣1)<2x,得:x<1,
解不等式﹣<1,得:x>﹣9,
则原不等式组的解集为﹣9<x<1.
【点睛】
此题考查了解一元一次不等式组,用到的知识点是解一元一次不等式组的步骤,关键是找出两个不等式解集的公共部分.
21、(1)2000件;(2)90260元.
【解析】
(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,根据单价=总价÷数量结合第二批比第一批的进价涨了4元/件,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)用(1)的结论×2可求出第二批购进该种衬衫的数量,再利用总利润=销售收入-成本,即可得出结论.
【详解】
解:(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,
根据题意得:-=4,
解得:x=2000,
经检验,x=2000是所列分式方程的解,且符合题意.
答:商场第一批购进衬衫2000件.
(2)2000×2=4000(件),
(2000+4000-150)×58+150×58×0.8-80000-176000=90260(元).
答:售完这两批衬衫,商场共盈利90260元.
【点睛】
本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.
22、(1)y=﹣,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2
【解析】
试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;
(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;
(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.
试题解析:(1)∵B(2,﹣4)在y=上,
∴m=﹣1.
∴反比例函数的解析式为y=﹣.
∵点A(﹣4,n)在y=﹣上,
∴n=2.
∴A(﹣4,2).
∵y=kx+b经过A(﹣4,2),B(2,﹣4),
∴,
解之得.
∴一次函数的解析式为y=﹣x﹣2.
(2)∵C是直线AB与x轴的交点,
∴当y=0时,x=﹣2.
∴点C(﹣2,0).
∴OC=2.
∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=3.
(3)不等式的解集为:﹣4<x<0或x>2.
23、 (1) A(﹣4,0),B(2,0);(2)△ACP最大面积是4.
【解析】
(1)令y=0,得到关于x 的一元二次方程﹣x2﹣x+4=0,解此方程即可求得结果;
(2)先求出直线AC解析式,再作PD⊥AO交AC于D,设P(t,﹣t2﹣t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以S△ACP=PD×OA=PD×4=2PD,可得S△ACP关于t 的函数关系式,继而可求出△ACP面积的最大值.
【详解】
(1)解:设y=0,则0=﹣x2﹣x+4
∴x1=﹣4,x2=2
∴A(﹣4,0),B(2,0)
(2)作PD⊥AO交AC于D
设AC解析式y=kx+b
∴
解得:
∴AC解析式为y=x+4.
设P(t,﹣t2﹣t+4)则D(t,t+4)
∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2
∴S△ACP=PD×4=﹣(t+2)2+4
∴当t=﹣2时,△ACP最大面积4.
【点睛】
本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.
24、(1)证明见解析;(2);(3)证明见解析.
【解析】
(1)根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°,从而推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可.
(2)根据两直线平行,内错角相等可得∠ACF=∠F,根据垂径定理可得CE=CD=a,连接OC,设圆的半径为r,表示出OE,然后利用勾股定理列式计算即可求出r.
(3)连接BD,根据在同圆或等圆中,同弧所对的圆周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,从而求出△BDG和△FBG相似,根据相似三角形对应边成比例列式表示出BG2,然后代入等式左边整理即可得证.
【详解】
解:(1)证明:∵OA=OB,
∴∠OAB=∠OBA.
∵OA⊥CD,
∴∠OAB+∠AGC=90°.
又∵∠FGB=∠FBG,∠FGB=∠AGC,
∴∠FBG+∠OBA=90°,即∠OBF=90°.
∴OB⊥FB.
∵AB是⊙O的弦,∴点B在⊙O上.∴BF是⊙O的切线.
(2)∵AC∥BF,
∴∠ACF=∠F.
∵CD=a,OA⊥CD,
∴CE=CD=a.
∵tan∠F=,
∴,
即.
解得.
连接OC,设圆的半径为r,则,
在Rt△OCE中,,
即,
解得.
(3)证明:连接BD,
∵∠DBG=∠ACF,∠ACF=∠F(已证),
∴∠DBG=∠F.
又∵∠FGB=∠FGB,
∴△BDG∽△FBG.
∴,即GB2=DG•GF.
∴GF2﹣GB2=GF2﹣DG•GF=GF(GF﹣DG)=GF•DF,即GF2﹣GB2=DF•GF.
年龄
18
19
20
21
22
人数
1
4
3
2
2
2024年黑龙江省哈尔滨市南岗区FF联盟市级名校中考数学模拟试卷(含解析): 这是一份2024年黑龙江省哈尔滨市南岗区FF联盟市级名校中考数学模拟试卷(含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年黑龙江省哈尔滨市南岗区FF联盟市级名校中考数学模拟试卷(含答案): 这是一份2024年黑龙江省哈尔滨市南岗区FF联盟市级名校中考数学模拟试卷(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
黑龙江省哈尔滨市南岗区市级名校2021-2022学年中考押题数学预测卷含解析: 这是一份黑龙江省哈尔滨市南岗区市级名校2021-2022学年中考押题数学预测卷含解析,共23页。试卷主要包含了下列各式计算正确的是等内容,欢迎下载使用。