|试卷下载
搜索
    上传资料 赚现金
    2022届黑龙江省哈尔滨市南岗区第十七中学中考数学四模试卷含解析
    立即下载
    加入资料篮
    2022届黑龙江省哈尔滨市南岗区第十七中学中考数学四模试卷含解析01
    2022届黑龙江省哈尔滨市南岗区第十七中学中考数学四模试卷含解析02
    2022届黑龙江省哈尔滨市南岗区第十七中学中考数学四模试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届黑龙江省哈尔滨市南岗区第十七中学中考数学四模试卷含解析

    展开
    这是一份2022届黑龙江省哈尔滨市南岗区第十七中学中考数学四模试卷含解析,共24页。试卷主要包含了一元二次方程的根的情况是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为

    A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1
    2.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,…,则图⑥________中有个棋子( )

    A.31 B.35 C.40 D.50
    3.化简(﹣a2)•a5所得的结果是( )
    A.a7 B.﹣a7 C.a10 D.﹣a10
    4.半径为的正六边形的边心距和面积分别是(  )
    A., B.,
    C., D.,
    5.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是  

    A. B. C. D.
    6.2017年,太原市GDP突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为(  )
    A.3382×108元 B.3.382×108元 C.338.2×109元 D.3.382×1011元
    7.如图,在△ABC中,∠ACB=90°,点D为AB的中点,AC=3,cosA=,将△DAC沿着CD折叠后,点A落在点E处,则BE的长为(  )

    A.5 B.4 C.7 D.5
    8.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是

    A.5个 B.4个 C.3个 D.2个
    9.如图,将周长为8的△ABC沿BC方向平移1个单位长度得到,则四边形的周长为( )

    A.8 B.10 C.12 D.16
    10.一元二次方程的根的情况是  
    A.有两个不相等的实数根 B.有两个相等的实数根
    C.没有实数根 D.无法判断
    二、填空题(共7小题,每小题3分,满分21分)
    11.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点至多拐一次弯的路径长称为P,Q的“实际距离”如图,若,,则P,Q的“实际距离”为5,即或环保低碳的共享单车,正式成为市民出行喜欢的交通工具设A,B两个小区的坐标分别为,,若点表示单车停放点,且满足M到A,B的“实际距离”相等,则______.

    12.如图,点A的坐标为(3,),点B的坐标为(6,0),将△AOB绕点B按顺时针方向旋转一定的角度后得到△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为_____.

    13.若,,则代数式的值为__________.
    14.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______度.

    15.满足的整数x的值是_____.
    16.⊙M的圆心在一次函数y=x+2图象上,半径为1.当⊙M与y轴相切时,点M的坐标为_____.

    17.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n),已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(﹣1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).
    三、解答题(共7小题,满分69分)
    18.(10分)如图,是等腰三角形,,.

    (1)尺规作图:作的角平分线,交于点(保留作图痕迹,不写作法);
    (2)判断是否为等腰三角形,并说明理由.
    19.(5分)已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.
    (1)若点D的横坐标为2,求抛物线的函数解析式;
    (2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;
    (3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?

    20.(8分)春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率.
    21.(10分)如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.

    (1)求证:DB平分∠ADC;
    (2)若EB=10,CD=9,tan∠ABE=,求⊙O的半径.
    22.(10分)如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=的图象交于A(1,m)、B(n,1)两点.
    (1)求直线AB的解析式;
    (2)根据图象写出当y1>y2时,x的取值范围;
    (3)若点P在y轴上,求PA+PB的最小值.

    23.(12分)如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线()过E,A′两点.

    (1)填空:∠AOB= °,用m表示点A′的坐标:A′( , );
    (2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且时,△D′OE与△ABC是否相似?说明理由;
    (3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:
    ①求a,b,m满足的关系式;
    ②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.
    24.(14分)已知:如图,∠ABC,射线BC上一点D,
    求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    试题分析:根据作图方法可得点P在第二象限角平分线上,
    则P点横纵坐标的和为0,即2a+b+1=0,
    ∴2a+b=﹣1.故选B.
    2、C
    【解析】
    根据题意得出第n个图形中棋子数为1+2+3+…+n+1+2n,据此可得.
    【详解】
    解:∵图1中棋子有5=1+2+1×2个,
    图2中棋子有10=1+2+3+2×2个,
    图3中棋子有16=1+2+3+4+3×2个,

    ∴图6中棋子有1+2+3+4+5+6+7+6×2=40个,
    故选C.
    【点睛】
    本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
    3、B
    【解析】
    分析:根据同底数幂的乘法计算即可,计算时注意确定符号.
    详解: (-a2)·a5=-a7.
    故选B.
    点睛:本题考查了同底数幂的乘法,熟练掌握同底数的幂相乘,底数不变,指数相加是解答本题的关键.
    4、A
    【解析】
    首先根据题意画出图形,易得△OBC是等边三角形,继而可得正六边形的边长为R,然后利用解直角三角形求得边心距,又由S正六边形=求得正六边形的面积.
    【详解】
    解:如图,O为正六边形外接圆的圆心,连接OB,OC,过点O作OH⊥BC于H,

    ∵六边形ABCDEF是正六边形,半径为,
    ∴∠BOC=,
    ∵OB=OC=R,
    ∴△OBC是等边三角形,
    ∴BC=OB=OC=R,
    ∵OH⊥BC,
    ∴在中,,
    即,
    ∴,即边心距为;
    ∵,
    ∴S正六边形=,
    故选:A.
    【点睛】
    本题考查了正多边形和圆的知识;求得正六边形的中心角为60°,得到等边三角形是正确解答本题的关键.
    5、C
    【解析】
    如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.
    【详解】
    如图作,FN∥AD,交AB于N,交BE于M.

    ∵四边形ABCD是正方形,
    ∴AB∥CD,∵FN∥AD,
    ∴四边形ANFD是平行四边形,
    ∵∠D=90°,
    ∴四边形ANFD是矩形,
    ∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,
    ∵AN=BN,MN∥AE,
    ∴BM=ME,
    ∴MN=a,
    ∴FM=a,
    ∵AE∥FM,
    ∴,
    故选C.
    【点睛】
    本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.
    6、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    3382亿=338200000000=3.382×1.
    故选:D.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    7、C
    【解析】
    连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可.
    【详解】
    解:连接AE,

    ∵AC=3,cos∠CAB=,
    ∴AB=3AC=9,
    由勾股定理得,BC==6,
    ∠ACB=90°,点D为AB的中点,
    ∴CD=AB=,
    S△ABC=×3×6=9,
    ∵点D为AB的中点,
    ∴S△ACD=S△ABC=,
    由翻转变换的性质可知,S四边形ACED=9,AE⊥CD,
    则×CD×AE=9,
    解得,AE=4,
    ∴AF=2,
    由勾股定理得,DF==,
    ∵AF=FE,AD=DB,
    ∴BE=2DF=7,
    故选C.
    【点睛】
    本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    8、B
    【解析】
    解:∵二次函数y=ax3+bx+c(a≠3)过点(3,3)和(﹣3,3),
    ∴c=3,a﹣b+c=3.
    ①∵抛物线的对称轴在y轴右侧,
    ∴,x>3.
    ∴a与b异号.
    ∴ab<3,正确.
    ②∵抛物线与x轴有两个不同的交点,
    ∴b3﹣4ac>3.
    ∵c=3,
    ∴b3﹣4a>3,即b3>4a.正确.
    ④∵抛物线开口向下,∴a<3.
    ∵ab<3,∴b>3.
    ∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正确.
    ③∵a﹣b+c=3,∴a+c=b.
    ∴a+b+c=3b>3.
    ∵b<3,c=3,a<3,
    ∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.
    ∴3<a+b+c<3,正确.
    ⑤抛物线y=ax3+bx+c与x轴的一个交点为(﹣3,3),设另一个交点为(x3,3),则x3>3,
    由图可知,当﹣3<x<x3时,y>3;当x>x3时,y<3.
    ∴当x>﹣3时,y>3的结论错误.
    综上所述,正确的结论有①②③④.故选B.
    9、B
    【解析】
    根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.
    根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,
    ∴AD=1,BF=BC+CF=BC+1,DF=AC;
    又∵AB+BC+AC=8,
    ∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.
    故选C.
    “点睛”本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.
    10、A
    【解析】
    把a=1,b=-1,c=-1,代入,然后计算,最后根据计算结果判断方程根的情况.
    【详解】

    方程有两个不相等的实数根.
    故选A.
    【点睛】
    本题考查根的判别式,把a=1,b=-1,c=-1,代入计算是解题的突破口.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1.
    【解析】
    根据两点间的距离公式可求m的值.
    【详解】
    依题意有,
    解得,
    故答案为:1.
    【点睛】
    考查了坐标确定位置,正确理解实际距离的定义是解题关键.
    12、(,)
    【解析】
    作AC⊥OB、O′D⊥A′B,由点A、B坐标得出OC=3、AC=、BC=OC=3,从而知tan∠ABC==,由旋转性质知BO′=BO=6,tan∠A′BO′=tan∠ABO==,设O′D=x、BD=3x,由勾股定理求得x的值,即可知BD、O′D的长即可.
    【详解】

    如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,
     
    ∵A(3, ),
    ∴OC=3,AC=,
    ∵OB=6,
    ∴BC=OC=3,
    则tan∠ABC==,
    由旋转可知,BO′=BO=6,∠A′BO′=∠ABO,
    ∴==,
    设O′D=x,BD=3x,
    由O′D2+BD2=O′B2可得(x)2+(3x)2=62,
    解得:x=或x=− (舍),
    则BD=3x=,O′D=x=,
    ∴OD=OB+BD=6+=,
    ∴点O′的坐标为(,).
    【点睛】
    本题考查的是图形的旋转,熟练掌握勾股定理和三角函数是解题的关键.
    13、-12
    【解析】
    分析:对所求代数式进行因式分解,把,,代入即可求解.
    详解:,,

    故答案为:
    点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.
    14、270
    【解析】
    根据三角形的内角和与平角定义可求解.
    【详解】
    解析:如图,根据题意可知∠5=90°,
    ∴ ∠3+∠4=90°,
    ∴ ∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案为:270度.

    【点睛】
    本题主要考查了三角形的内角和定理和内角与外角之间的关系.要会熟练运用内角和定理求角的度数.
    15、3,1
    【解析】
    直接得出2<<3,1<<5,进而得出答案.
    【详解】
    解:∵2<<3,1<<5,
    ∴的整数x的值是:3,1.
    故答案为:3,1.
    【点睛】
    此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键.
    16、(1,)或(﹣1,)
    【解析】
    设当⊙M与y轴相切时圆心M的坐标为(x,x+2),再根据⊙M的半径为1即可得出y的值.
    【详解】
    解:∵⊙M的圆心在一次函数y=x+2的图象上运动,
    ∴设当⊙M与y轴相切时圆心M的坐标为(x, x+2),
    ∵⊙M的半径为1,
    ∴x=1或x=−1,
    当x=1时,y=,
    当x=−1时,y=.
    ∴P点坐标为:(1, )或(−1, ).
    故答案为(1, )或(−1, ).
    【点睛】
    本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.
    17、①③④
    【解析】
    分析:根据两个向量垂直的判定方法一一判断即可;
    详解:①∵2×(−1)+1×2=0,
    ∴与垂直;
    ②∵
    ∴与不垂直.
    ③∵
    ∴与垂直.
    ④∵
    ∴与垂直.
    故答案为:①③④.
    点睛:考查平面向量,解题的关键是掌握向量垂直的定义.

    三、解答题(共7小题,满分69分)
    18、(1)作图见解析 (2)为等腰三角形
    【解析】
    (1)作角平分线,以B点为圆心,任意长为半径,画圆弧;交直线AB于1点,直线BC于2点,再以2点为圆心,任意长为半径,画圆弧,再以1点为圆心,任意长为半径,画圆弧,相交于3点,连接3点和O点,直线3O即是已知角AOB的对称中心线.
    (2)分别求出的三个角,看是否有两个角相等,进而判断是否为等腰三角形.
    【详解】
    (1)具体如下:

    (2)在等腰中,,BD为∠ABC的平分线,故,,那么在中,

    ∴是否为等腰三角形.
    【点睛】
    本题考查角平分线的作法,以及判定等腰三角形的方法.熟悉了解角平分线的定义以及等腰三角形的判定方法是解题的关键所在.
    19、(1)y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)(﹣4,﹣)和(﹣6,﹣3)(3)(1,﹣4).
    【解析】
    试题分析:(1)根据二次函数的交点式确定点A、B的坐标,求出直线的解析式,求出点D的坐标,求出抛物线的解析式;(2)作PH⊥x轴于H,设点P的坐标为(m,n),分△BPA∽△ABC和△PBA∽△ABC,根据相似三角形的性质计算即可;(3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,根据正切的定义求出Q的运动时间t=BE+EF时,t最小即可.
    试题解析:(1)∵y=a(x+3)(x﹣1),
    ∴点A的坐标为(﹣3,0)、点B两的坐标为(1,0),
    ∵直线y=﹣x+b经过点A,
    ∴b=﹣3,
    ∴y=﹣x﹣3,
    当x=2时,y=﹣5,
    则点D的坐标为(2,﹣5),
    ∵点D在抛物线上,
    ∴a(2+3)(2﹣1)=﹣5,
    解得,a=﹣,
    则抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;
    (2)作PH⊥x轴于H,
    设点P的坐标为(m,n),
    当△BPA∽△ABC时,∠BAC=∠PBA,
    ∴tan∠BAC=tan∠PBA,即=,
    ∴=,即n=﹣a(m﹣1),
    ∴,
    解得,m1=﹣4,m2=1(不合题意,舍去),
    当m=﹣4时,n=5a,
    ∵△BPA∽△ABC,
    ∴=,即AB2=AC•PB,
    ∴42=•,
    解得,a1=(不合题意,舍去),a2=﹣,
    则n=5a=﹣,
    ∴点P的坐标为(﹣4,﹣);
    当△PBA∽△ABC时,∠CBA=∠PBA,
    ∴tan∠CBA=tan∠PBA,即=,
    ∴=,即n=﹣3a(m﹣1),
    ∴,
    解得,m1=﹣6,m2=1(不合题意,舍去),
    当m=﹣6时,n=21a,
    ∵△PBA∽△ABC,
    ∴=,即AB2=BC•PB,
    ∴42=•,
    解得,a1=(不合题意,舍去),a2=﹣,
    则点P的坐标为(﹣6,﹣),
    综上所述,符合条件的点P的坐标为(﹣4,﹣)和(﹣6,﹣);

    (3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,
    则tan∠DAN===,
    ∴∠DAN=60°,
    ∴∠EDF=60°,
    ∴DE==EF,
    ∴Q的运动时间t=+=BE+EF,
    ∴当BE和EF共线时,t最小,
    则BE⊥DM,E(1,﹣4).

    考点:二次函数综合题.
    20、小王在这两年春节收到的年平均增长率是
    【解析】
    增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x)元,在2018年的基础上再增长x,就是2019年收到微信红包金额400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可.
    【详解】
    解:设小王在这两年春节收到的红包的年平均增长率是.
    依题意得:
    解得(舍去).
    答:小王在这两年春节收到的年平均增长率是
    【点睛】
    本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.
    21、(1)详见解析;(2)OA=.
    【解析】
    (1)连接OB,证明∠ABE=∠ADB,可得∠ABE=∠BDC,则∠ADB=∠BDC;
    (2)证明△AEB∽△CBD,AB=x,则BD=2x,可求出AB,则答案可求出.
    【详解】
    (1)证明:连接OB,

    ∵BE为⊙O的切线,
    ∴OB⊥BE,
    ∴∠OBE=90°,
    ∴∠ABE+∠OBA=90°,
    ∵OA=OB,
    ∴∠OBA=∠OAB,
    ∴∠ABE+∠OAB=90°,
    ∵AD是⊙O的直径,
    ∴∠OAB+∠ADB=90°,
    ∴∠ABE=∠ADB,
    ∵四边形ABCD的外接圆为⊙O,
    ∴∠EAB=∠C,
    ∵∠E=∠DBC,
    ∴∠ABE=∠BDC,
    ∴∠ADB=∠BDC,
    即DB平分∠ADC;
    (2)解:∵tan∠ABE=,
    ∴设AB=x,则BD=2x,
    ∴,
    ∵∠BAE=∠C,∠ABE=∠BDC,
    ∴△AEB∽△CBD,
    ∴,
    ∴,
    解得x=3,
    ∴AB=x=15,
    ∴OA=.
    【点睛】
    本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题.
    22、(1)y=﹣x+4;(2)1<x<1;(1)2.
    【解析】
    (1)依据反比例函数y2= (x>0)的图象交于A(1,m)、B(n,1)两点,即可得到A(1,1)、B(1,1),代入一次函数y1=kx+b,可得直线AB的解析式;
    (2)当1<x<1时,正比例函数图象在反比例函数图象的上方,即可得到当y1>y2时,x的取值范围是1<x<1;
    (1)作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,利用勾股定理即可得到BC的长.
    【详解】
    (1)A(1,m)、B(n,1)两点坐标分别代入反比例函数y2= (x>0),可得
    m=1,n=1,
    ∴A(1,1)、B(1,1),
    把A(1,1)、B(1,1)代入一次函数y1=kx+b,可得
    ,解得,
    ∴直线AB的解析式为y=-x+4;
    (2)观察函数图象,发现:
    当1<x<1时,正比例函数图象在反比例函数图象的上方,
    ∴当y1>y2时,x的取值范围是1<x<1.
    (1)如图,作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,
    过C作y轴的平行线,过B作x轴的平行线,交于点D,则

    Rt△BCD中,BC=,
    ∴PA+PB的最小值为2.
    【点睛】
    本题考查的是反比例函数与一次函数的交点问题,根据函数图象的上下位置关系结合交点的横坐标,得出不等式的取值范围是解答此题的关键.
    23、(1)45;(m,﹣m);(2)相似;(3)①;②.
    【解析】
    试题分析:(1)由B与C的坐标求出OB与OC的长,进一步表示出BC的长,再证三角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A′坐标;
    (2)△D′OE∽△ABC.表示出A与B的坐标,由,表示出P坐标,由抛物线的顶点为A′,表示出抛物线解析式,把点E坐标代入即可得到m与n的关系式,利用三角形相似即可得证;
    (3)①当E与原点重合时,把A与E坐标代入,整理即可得到a,b,m的关系式;
    ②抛物线与四边形ABCD有公共点,可得出抛物线过点C时的开口最大,过点A时的开口最小,分两种情况考虑:若抛物线过点C(3m,0),此时MN的最大值为10,求出此时a的值;若抛物线过点A(2m,2m),求出此时a的值,即可确定出抛物线与四边形ABCD有公共点时a的范围.
    试题解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即A′(m,﹣m);故答案为45;m,﹣m;
    (2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m,m),∵A′为抛物线的顶点,∴设抛物线解析式为,∵抛物线过点E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;
    (3)①当点E与点O重合时,E(0,0),∵抛物线过点E,A,∴,整理得:,即;
    ②∵抛物线与四边形ABCD有公共点,∴抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;
    若抛物线过点A(2m,2m),则,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD有公共点时a的范围为.
    考点:1.二次函数综合题;2.压轴题;3.探究型;4.最值问题.
    24、见解析.
    【解析】
    根据角平分线的性质、线段的垂直平分线的性质即可解决问题.
    【详解】
    ∵点P在∠ABC的平分线上,
    ∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),
    ∵点P在线段BD的垂直平分线上,
    ∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),
    如图所示:

    【点睛】
    本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.

    相关试卷

    2024年黑龙江省哈尔滨市南岗区萧红中学中考数学三模试卷(含解析): 这是一份2024年黑龙江省哈尔滨市南岗区萧红中学中考数学三模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年黑龙江省哈尔滨市南岗区虹桥中学中考数学一模试卷(含解析): 这是一份2024年黑龙江省哈尔滨市南岗区虹桥中学中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年黑龙江省哈尔滨市南岗区萧红中学中考数学四模试卷+: 这是一份2023年黑龙江省哈尔滨市南岗区萧红中学中考数学四模试卷+,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map