所属成套资源:2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版)
- 第11讲 函数的图象 2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版) 试卷 试卷 0 次下载
- 第12讲 函数与方程 2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版) 试卷 试卷 0 次下载
- 第14讲 导数的概念及运算 2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版) 试卷 试卷 0 次下载
- 第15讲 导数的应用——导数与函数的单调性 2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版) 试卷 试卷 0 次下载
- 第16讲 导数的应用——导数与函数的极值、最值 2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版) 试卷 试卷 0 次下载
第13讲 函数模型及其应用 2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版)
展开这是一份第13讲 函数模型及其应用 2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版),文件包含第13讲函数模型及其应用教师版docx、第13讲函数模型及其应用学生版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
第13讲 函数模型及其应用
思维导图
知识梳理
1.几种常见的函数模型
函数模型 | 函数解析式 |
一次函数模型 | f(x)=ax+b(a,b为常数,a≠0) |
二次函数模型 | f(x)=ax2+bx+c(a,b,c为常数,a≠0) |
指数函数模型 | f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0) |
对数函数模型 | f(x)=blogax+c (a,b,c为常数,a>0且a≠1,b≠0) |
幂函数模型 | f(x)=axn+b(a,b,n为常数,a≠0,n≠0) |
2.三种函数模型性质比较
| y=ax(a>1) | y=logax(a>1) | y=xn(n>0) |
在(0,+∞)上的单调性 | 增函数 | 增函数 | 增函数 |
增长速度 | 越来越快 | 越来越慢 | 相对平稳 |
图象的变化 | 随x值增大,图象与y轴接近平行 | 随x值增大,图象与x轴接近平行 | 随n值变化而不同 |
题型归纳
题型1 用函数图象刻画变化过程
【例1-1】(2020•徐汇区二模)某地区的绿化面积每年平均比上一年增长,经过年,绿化面积与原绿化面积之比为,则的图象大致为
A. B.
C. D.
【例1-2】(2019秋•琼山区校级期末)两个学校、开展节能活动,活动开始后两学校的用电量、与时间(天的关系如图所示,则一定有
A.比节能效果好
B.的用电量在,上的平均变化率比的用电量在,上的平均变化率大
C.两学校节能效果一样好
D.与自节能以来用电量总是一样大
【跟踪训练1-1】(2019秋•武昌区期末)在内将某种药物注射进患者的血液中.在注射期间,血液中的药物含量呈线性增加;停止注射后,血液中的药物含量呈指数衰减.能反映血液中药物含量随时间变化的图象是
A. B.
C. D.
【跟踪训练1-2】(2020•来宾模拟)近两年为抑制房价过快上涨,政府出台了系列以“限购、限外、限贷、限价”为主题的房地产调控政策.各地房产部门为尽快实现稳定房价,提出多种方案,其中之一就是在规定的时间内完成房产供应量任务.已知房产供应量与时间的函数关系如图所示,则在以下四种房产供应方案中,供应效率(单位时间的供应量)逐步提高的是
A. B.
C. D.
【名师指导】
判断函数图象与实际问题中两变量变化过程相吻合的两种方法
(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.
(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.
题型2 应用所给函数模型解决实际问题
【例2-1】(2020•山东)基本再生数与世代间隔是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数随时间(单位:天)的变化规律,指数增长率与,近似满足.有学者基于已有数据估计出,.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为
A.1.2天 B.1.8天 C.2.5天 D.3.5天
【例2-2】(2020•新课标Ⅲ)模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数的单位:天)的模型:,其中为最大确诊病例数.当时,标志着已初步遏制疫情,则约为
A.60 B.63 C.66 D.69
【跟踪训练2-1】(2020春•海淀区校级期末)尽管目前人类还无法准确预报地震,但科学家通过研究发现地震释放出的能量(单位:焦耳)与地震里氏震级之间的关系为,1976年7月28日我国唐山发生的里氏7.8级地震与2008年5月12日我国汶川发生的里氏8.0级地震所释放出来的能量的比值为
A. B.0.3 C. D.
【跟踪训练2-2】(2020•梅州二模)某食品的保鲜时间(单位:小时)与储存温度(单位:满足函数关系为自然对数的底数,,为常数),若该食品在的保鲜时间是384小时,在的保鲜时间是24小时,则该食品在的保鲜时间是 .
【名师指导】
求解所给函数模型解决实际问题的关注点
(1)认清所给函数模型,弄清哪些量为待定系数.
(2)根据已知利用待定系数法,确定模型中的待定系数.
(3)利用该模型求解实际问题.
题型3 构建函数模型解决实际问题
【例3-1】(2020春•内江期末)某公司生产某种产品,其年产量为万件时利润为万元,当时,年利润为,当时,年利润为.
(1)若公司生产量在且年利润不低于400万时,求生产量的范围;
(2)求公司年利润的最大值.
【例3-2】一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.
(1)求每年砍伐面积的百分比;
(2)到今年为止,该森林已砍伐了多少年?
【例3-3】某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9 平方米,且高度不低于 米.记防洪堤横断面的腰长为x米,外周长(梯形的上底线段BC与两腰长的和)为y米.要使防洪堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x=________米.
【例3-4】(2019秋•济南期末)济南新旧动能转换先行区,承载着济南从“大明湖时代”迈向“黄河时代”的梦想,肩负着山东省新旧动能转换先行先试的重任,是全国新旧动能转换的先行区.先行区将以“结构优化、质量提升”为目标,通过开放平台汇聚创新要素,坚持绿色循环保障持续发展,建设现代绿色智慧新城.2019年某智能机器人制造企业有意落户先行区,对市场进行了可行性分析,如果全年固定成本共需2000(万元),每年生产机器人x( 百个),需另投人成本C(x)(万元),且,由市场调研知,每个机器人售价6万元,且全年生产的机器人当年能全部销售完.
(1)求年利润L(x)(万元)关于年产量x( 百个)的函数关系式;(利润=销售额﹣成本)
(2)该企业决定:当企业年最大利润超过2000(万元)时,才选择落户新旧动能转换先行区.请问该企业能否落户先行区,并说明理由.
【跟踪训练3-1】(2020春•东营区校级月考)在天文学中,天体的明暗程度可以用星等或亮度来描述.若两颗星的星等与亮度满足.其中星等为,星的亮度为.
(1)若,则 ;
(2)若太阳的星等是,天狼星的星等是,则太阳与天狼星的亮度的比值为 .
【跟踪训练3-2】(2019秋•平谷区期末)某餐厅经营盒饭生意,每天的房租、人员工资等固定成本为200元,每盒盒饭的成本为15元,销售单价与日均销售量的关系如表:
单价/元 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
日销售量/盒 | 480 | 440 | 400 | 360 | 320 | 280 | 240 |
根据以上数据,当这个餐厅每盒盒饭定价______元时,利润最大( )
A.16.5 B.19.5 C.21.5 D.22
【跟踪训练3-3】(2019秋•临沂期末)某地某路无人驾驶公交车发车时间间隔t(单位:分钟)满足5≤t≤20,t∈N.经测算,该路无人驾驶公交车载客量p(t)与发车时间间隔t满足:其中t∈N.
(1)求p(5),并说明p(5)的实际意义;
(2)若该路公交车每分钟的净收益(元),问当发车时间间隔为多少时,该路公交车每分钟的净收益最大?并求每分钟的最大净收益.
【名师指导】
建模解决实际问题的三个步骤
相关试卷
这是一份第56讲 排列与组合(讲) 2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版),文件包含第56讲排列与组合讲教师版docx、第56讲排列与组合讲学生版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份第50讲 双曲线(讲) 2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版),文件包含第50讲双曲线讲教师版docx、第50讲双曲线讲学生版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
这是一份第48讲 椭圆及其性质(讲) 2021-2022年新高考数学一轮复习考点归纳 (学生版+教师版),文件包含第48讲椭圆及其性质讲教师版docx、第48讲椭圆及其性质讲学生版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。