所属成套资源:2021-2022学年八年级数学下册基础知识专项讲练(人教版)
- 专题19.19 一次函数最值问题(专项练习)-2021-2022学年八年级数学下册基础知识专项讲练(人教版) 试卷 4 次下载
- 专题19.20 一次函数“设参求值”问题(专项练习)-2021-2022学年八年级数学下册基础知识专项讲练(人教版) 试卷 4 次下载
- 专题19.21 一次函数知识点分类训练专题(专项练习1)-2021-2022学年八年级数学下册基础知识专项讲练(人教版) 试卷 2 次下载
- 专题19.22 一次函数知识点分类训练专题(专项练习2)-2021-2022学年八年级数学下册基础知识专项讲练(人教版) 试卷 2 次下载
- 专题20.1 《数据的分析》全章复习与巩固(基础篇)(专项练习)-2021-2022学年八年级数学下册基础知识专项讲练(人教版) 试卷 0 次下载
专题20.2 《数据的分析》全章复习与巩固(提高篇)(专项练习)-2021-2022学年八年级数学下册基础知识专项讲练(人教版)
展开
这是一份专题20.2 《数据的分析》全章复习与巩固(提高篇)(专项练习)-2021-2022学年八年级数学下册基础知识专项讲练(人教版),共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题20.2 《数据的分析》全章复习与巩固(提高篇)
(专项练习)
一、单选题
1.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是
A.平均数 B.中位数 C.众数 D.方差
2.某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )
A.平均数变小,方差变小 B.平均数变小,方差变大
C.平均数变大,方差变小 D.平均数变大,方差变大
3.某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )
A.1.95元 B.2.15元 C.2.25元 D.2.75元
4.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )
A.18分,17分 B.20分,17分 C.20分,19分 D.20分,20分
5.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:
甲
2
6
7
7
8
乙
2
3
4
8
8
关于以上数据,说法正确的是( )
A.甲、乙的众数相同 B.甲、乙的中位数相同
C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差
6.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是( )
A.中位数是12.7% B.众数是15.3%
C.平均数是15.98% D.方差是0
7.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:
鞋的尺码/cm
23
23.5
24
24.5
25
销售量/双
1
3
3
6
2
则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )
A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,24
8.,…,的平均数为4,,…,的平均数为6,则,…,的平均数为( )
A.5 B.4 C.3 D.8
9.一组数据的方差为s2,将这组数据中每个数据都除以3,所得新数据的方差是( )
A.13s2 B.3s2 C.19s2 D.9s2
10.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,
方差分别是,,,.在本次射击测试中,成绩最
稳定的是( )
A.甲 B.乙 C.丙 D.丁
11.已知a、b均为正整数,则数据a、b、10、11、11、12的众数和中位数可能分别是( )
A.10、10 B.11、11 C.10、11.5 D.12、10.5
12.某地区某月前两周从周一至周五每天的最低气温是单位:,和,若第一周这五天的平均气温为,则第二周这五天的平均气温为( )
A. B. C. D.
二、填空题
13.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.
14.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_____.
15.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为__.
16.射击比赛中,某队员 10 次射击成绩如图所示,则该队员的平均成绩是__________环.
17.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:
测试项目
创新能力
综合知识
语言表达
测试成绩(分数)
70
80
92
将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是_____分.
18.小明用S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=______.
19.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩_____.
20.数据,,,的平均数是4,方差是3,则数据,,,的平均数和方差分别是_____________.
21.已知2,3,5,m,n五个数据的方差是2,那么3,4,6,m+1,n+1五个数据的方差是______.
22.已知个互不相同的正整数的平均数是,中位数,那么这个正整数中最大数的最大值是________.
23.已知一组数据x1,x2,…,xn的方差为,则另一组数据5x1-2,5x2-2,…,5xn-2的方差为______.
24.下表为某班学生成绩的次数分配表.已知全班共有人,且众数为分,中位数为分,则之值为________.
成绩
(分)
次数
(人)
25.在重庆八中“青春飞扬”艺术节的钢琴演奏比赛决赛中,参加比赛的10名选手成绩统计如图所示,则这10名学生成绩的中位数是___________.
三、解答题
26.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表
借阅图书的次数
0次
1次
2次
3次
4次及以上
人数
7
13
a
10
3
请你根据统计图表中的信息,解答下列问题:
______,______.
该调查统计数据的中位数是______,众数是______.
请计算扇形统计图中“3次”所对应扇形的圆心角的度数;
若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.
27.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填写下表;
平均数(分)
中位数(分)
众数(分)
初中部
85
高中部
85
100
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.
28.绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:
设销售员的月销售额为x(单位:万元)。销售部规定:当x6,x>y,
∴x≥8,
当x=8时,y=7,中位数是第19、20两个数的平均数,都为60分,则中位数为60分,符合题意;
当x=9时,y=6,中位数是第19、20两个数的平均数,则中位数为(50+60)÷2=55分,不符合题意;
同理当x=10,11,12,13,14,15时,中位数都不等于60分,不符合题意.
∴x=8,y=7.
∴x2-y=64-7=57.
故答案为:57.
【点拨】本题结合代数式求值考查了众数与中位数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.本题的关键是确定x、y之值.
25.8.5
【解析】根据图形,这10个学生的分数为:7,7.5,8,8,8.5,8.5,9,9,9,9.5,则中位数为8.5.
故答案:8.5.
26.17、20;2次、2次;;人.
【分析】
(1)先由借阅1次的人数及其所占百分比求得总人数,总人数减去其他次数的人数求得a的值,用3次的人数除以总人数求得b的值;
(2)根据中位数和众数的定义求解;
(3)用360°乘以“3次”对应的百分比即可得;
(4)用总人数乘以样本中“4次及以上”的人数所占比例即可得.
【详解】
被调查的总人数为人,
,,即,
故答案为17、20;
由于共有50个数据,其中位数为第25、26个数据的平均数,
而第25、26个数据均为2次,
所以中位数为2次,
出现次数最多的是2次,
所以众数为2次,
故答案为2次、2次;
扇形统计图中“3次”所对应扇形的圆心角的度数为;
估计该校学生在一周内借阅图书“4次及以上”的人数为人.
【点拨】
本题考查了统计表、扇形统计图、众数、中位数等,读懂统计图、统计表,从中得到必要的信息是解决问题的关键.注意众数与中位数的求解方法.
27.(1)
平均数(分)
中位数(分)
众数(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成绩好些(3)初中代表队选手成绩较为稳定
解:(1)填表如下:
平均数(分)
中位数(分)
众数(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成绩好些.
∵两个队的平均数都相同,初中部的中位数高,
∴在平均数相同的情况下中位数高的初中部成绩好些.
(3)∵,
,
∴<,因此,初中代表队选手成绩较为稳定.
(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答.
(2)根据平均数和中位数的统计意义分析得出即可.
(3)分别求出初中、高中部的方差比较即可.
28.(1)补全统计图如图见解析;(2) “称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)月销售额奖励标准应定为22万元.
【解析】
【分析】(1) 根据称职的人数及其所占百分比求得总人数, 据此求得不称职、 基本称职和优秀的百分比, 再求出优秀的总人数, 从而得出销售 26 万元的人数, 据此即可补全图形 .
(2) 根据中位数和众数的定义求解可得;
(3) 根据中位数的意义求得称职和优秀的中位数即可得出符合要求的数据 .
【详解】
(1)依题可得:
“不称职”人数为:2+2=4(人),
“基本称职”人数为:2+3+3+2=10(人),
“称职”人数为:4+5+4+3+4=20(人),
∴总人数为:20÷50%=40(人),
∴不称职”百分比:a=4÷40=10%,
“基本称职”百分比:b=10÷40=25%,
“优秀”百分比:d=1-10%-25%-50%=15%,
∴“优秀”人数为:40×15%=6(人),
∴得26分的人数为:6-2-1-1=2(人),
补全统计图如图所示:
(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人,
“优秀”25万2人,26万2人,27万1人,28万1人;
“称职”的销售员月销售额的中位数为:22万,众数:21万;
“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;
(3)由(2)知月销售额奖励标准应定为22万.
∵“称职”和“优秀”的销售员月销售额的中位数为:22万,
∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.
【点拨】考查频数分布直方图、 扇形统计图、 中位数、 众数等知识, 解题的关键是灵活运用所学知识解决问题.
29.(1)500;14;21.6°;(2)见解析;(3)不合理;
【分析】
(1)用B的人数除以所占的百分比,计算即可求出被调查的员工总人数,求出B所占的百分比得到x的值,再求出A所占的百分比,然后乘以360°计算即可得解;
(2)求出C的人数,然后补全统计图即可,再用总人数乘以B所占的百分比计算即可得解;
(3)不合理;因为2000元~4000元的最多,占60%.
【详解】
(1)本次抽样调查的员工人数是:300÷60%=500(人),
D所占的百分比是:70÷500×100%=14%,
则在扇形统计图中x的值为14;
“月平均收入在2000元以内”的部分所对应扇形的圆心角的度数是360°×=21.6°,
故答案为500,14,21.6°;
(2)C的人数为:500×20%=100,
补全统计图如图所示,
补全统计图如图所示;
“2000元~4000元”的约为:
20万×60%=12万(人);
(3)不合理;
∵2000元~4000元的最多,占60%,
∴用月平均收入为4872元反映月收入情况不合理.
30.(1)169,169,169;(2)甲;(3)甲,成绩在1.65或1.65米以上的次数甲多;(4)乙,成绩在1.70或1.70米以上的次数乙多
【解析】
【分析】
(1)利用平均数、众数及中位数的定义分别求得a、b、c的值即可;
(2)方差越大,波动性越大,成绩越不稳定,反之也成立;
(3)比较一下甲、乙两名跳高运动员进行了8次选拔比赛的成绩,看谁的成绩在1.65或1.65米以上的次数多,就选哪位运动员参赛;若成绩在1.70米可获得冠军,看谁的成绩在1.70或1.70米以上的次数多,就选哪位运动员参赛.
【详解】
(1)a=(169+165+168+169+172+173+169+167)=169;
b=(169+169)=169;
∵169出现了3次,最多,
∴c=169
故答案为169,169,169;
(2)∵甲的方差小于乙的方差,
∴甲的成绩更稳定,
故答案为甲;
(3)若跳高1.65米就获得冠军,那么成绩在1.65或1.65米以上的次数甲多,则选择甲;
故答案为甲,成绩在1.65或1.65米以上的次数甲多;
(4)若跳高1.70米就获得冠军,那么成绩在1.70或1.70米以上的次数乙多,则选择乙.
故答案为乙,成绩在1.70或1.70米以上的次数乙多.
【点拨】本题考查平均数和方差的意义.平均数表示数据的平均水平;方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
相关试卷
这是一份初中数学人教版八年级下册17.1 勾股定理课时练习,共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版九年级数学下册基础知识专项讲练 专题27.45 《相似》全章复习与巩固(巩固篇)(专项练习),共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版九年级数学下册基础知识专项讲练 专题27.45 《相似》全章复习与巩固(巩固篇)(专项练习),共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。