初中数学沪科版八年级下册18.2 勾股定理的逆定理第1课时习题
展开18.2 勾股定理的逆定理
第1课时 勾股定理的逆定理
一、选择题
1.下列各组数中,是勾股数的是( )
A. 14,36,39 B. 8,24,25
C. 8,15,17 D. 10,20,26
2.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).
A.1∶1∶2 B.1∶3∶4
C.9∶25∶26 D.25∶144∶169
3.(易错题)在△ABC中,∠A,∠B,∠C的对边分别是 a,b,c,那么下面不能判定△ABC是直角三角形的是( )
A.∠B=∠C-∠A
B.a2 = (b+c) (b-c)
C.∠A:∠B:∠C=5 :4 :3[来源:学科网ZXXK]
D.a : b : c=5 : 4 : 3
4.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成各选项所示的两个直角三角形,其中正确的是( )
二、填空题
5.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,
①若a2+b2>c2,则∠c为____________;
②若a2+b2=c2,则∠c为____________;
③若a2+b2<c2,则∠c为____________.
6.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以a-2、a、a+2为边的三角形的面积为______.
7.△ABC的两边a,b分别为5,12,另一边c为奇数,且a+b+c是3的倍数,则c应为______,此三角形为______.
8.如图,D为△ABC的边BC上一点,已知 AB = 13,AD = 12,AC =15,BD=5,则BC的长为 .
三、解答题
9.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.
10.在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?
11.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.
12 (教材习题变式)如图所示,在四边形 ABCD 中,∠B= 90°,AB=4,BC=3,CD=12,AD=13,求四边形ABCD的面积.
13.观察下列各组勾股数的组成特点,你能求出第7组勾股数a,b,c各是多少吗?第n组呢?
第 1 组:3=2X1+1,4=2X1X(1+1),5=2X1X(1 + 1)+1;
第 2 组:5=2X2+1,12=2X2X(2+1),13=2X2X(2+1) + 1;
第 3 组:7=2X3+1,24=2X3X(3+1),25=2X3X(3+1) + 1;
第 4 组:9=2X4+1,40=2X4X(4+1),41=2X4X(4+1) + 1;
…;
第 7 组:a,b,c.
[来源:学|科|网]
参考答案
1. C 解析 ∵142+362=1492.392=1521≠1492,
∴A项不是勾股数;
∵82+242=640,252=625≠640,∴B项不是勾股数;
∵82+152=289,172=289,∴C项是勾股数;
∵102+202=500,262=676≠500,∴D项不是勾股数.
点拨:一组数是勾股数,必须符合两个条件:(1)三个数必须是正整数.(2)两个较小数的平方和等于最大数的平方.
2.C.
3. C 解析 A选项,∵∠B=∠C-∠A,∴∠A+∠B+∠C=∠A+∠C-∠A+∠C=180°,∴∠C=90°,∴ΔABC是直角三角形;B选项,a2=(b+c)(b-c),即a2+c2=b2,∴ΔABC为直角三角形;C选项,∠A:∠B:∠C=5:4:3,则最大角∠A=180°×=75°,则ΔABC为锐角三角形;D选项,a:b:c=5:4:3,则a2=b2+c2,则ΔABC为直角三角形,故选C.[来源:学科网]
4 C 解析 因为72+242=252,152+202=252,所以用长度为7,24,25和15,20,25的小木棒能分别摆成直角三角形,故选C.
5.①锐角;②直角;③钝角.
6.24.提示:7<a<9,∴a=8.
7.13,直角三角形.提示:7<c<17.
8. 14 解析 由AD2+BD2=AB2可知ΔABC为直角三角形,则AD为ΔABC的BC边上的高,在RtΔACD中,CD2=AC2-AD2=152-122=81,所以CD=9,BC=BD+CD=5+9=14.
9.
10.南偏东30°.
11.等腰三角形或直角三角形.提示:原式可变形为(a2-b2)(a2+b2-c2)=0.
12 解:如图所示,连接AC.
∵∠B=90°,
∴ΔABC是直角三角形.
依据勾股定理的AC2=AB2+BC2=42+32=25=52,∴AC=5.
在ΔACD中,AD2=132=169,CD2+AC2=122+52=169,∴AD2=AC2+CD2.
∴ΔACD是直角三角形,∠ACD=90°.
∴S四边形ABCD=SΔABC+SΔACD=AB•BC+AC•CD=×4×3+×5×12=6+30=36.
∴四边形ABCD的面积为36.
方法:要求不规则四边形ABCD的面积,可把四边形分割成几个三角形,这是常用的方法.此题是先利用勾股定理求出AC的长,再利用勾股定理的逆定理判断ΔACD为直角三角形,即原四边形ABCD可分割成两个直角三角形.[来源:学_科_网Z_X_X_K]
13. 分析:观察已知勾股数的特点,找出规律.
解:第7组:a=2×7+1=15,b=2×7×(7+1)=112,c=2×7×(7+1)+1=113.
第n组:a=2n+1,b=2n(n+1),c=2n(n+1)+1.
数学八年级下册第18章 勾股定理18.2 勾股定理的逆定理精品第1课时课后复习题: 这是一份数学八年级下册第18章 勾股定理18.2 勾股定理的逆定理精品第1课时课后复习题,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
沪科版八年级下册20.2 数据的集中趋势与离散程度第1课时同步练习题: 这是一份沪科版八年级下册20.2 数据的集中趋势与离散程度第1课时同步练习题,共5页。试卷主要包含了数据的离散程度,某市测得一周的PM2,82等内容,欢迎下载使用。
数学第20章 数据的初步分析20.2 数据的集中趋势与离散程度第1课时同步练习题: 这是一份数学第20章 数据的初步分析20.2 数据的集中趋势与离散程度第1课时同步练习题,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。