所属成套资源:高考数学(理数)一轮复习检测卷 (学生版)
高考数学(理数)一轮复习检测卷:7.2《直线、平面的平行关系》 (学生版)
展开
这是一份高考数学(理数)一轮复习检测卷:7.2《直线、平面的平行关系》 (学生版),共5页。试卷主要包含了给出三个命题,下列命题中成立的个数是,有如下三个命题,给出下列四个命题等内容,欢迎下载使用。
限时规范训练(限时练·夯基练·提能练)A级 基础夯实练1.给出三个命题:①若两条直线和一个平面所成的角相等,则这两条直线互相平行;②若两条直线与一个平面垂直,则这两条直线互相平行;③若两条直线与一个平面平行,则这两条直线互相平行.其中正确的命题的个数是( )A.0 B.1C.2 D.32.下列命题中成立的个数是( )①直线l平行于平面α内的无数条直线,则l∥α;②若直线l在平面α外,则l∥α;③若直线l∥b,直线b⊂α,则l∥α;④若直线l∥b,直线b⊂α,那么直线l就平行于平面α内的无数条直线.A.1 B.2C.3 D.43.有如下三个命题:①分别在两个平面内的两条直线一定是异面直线;②垂直于同一个平面的两条直线是平行直线;③过平面α的一条斜线有一个平面与平面α垂直.其中正确命题的个数为( )A.0 B.1C.2 D.34.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( )A.若m∥α,n∥α,则m∥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若α∩β=m,n⊂α,则n⊥βD.若m⊥α,m∥n,n⊂β,则α⊥β5.设a,b为两条不同的直线,α,β为两个不同的平面.则下列四个命题中,正确的是( )A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b 6.给出下列四个命题:①平面外的一条直线与这个平面最多有一个公共点;②若平面α内的一条直线a与平面β内的一条直线b相交,则α与β相交;③若一条直线和两条平行线都相交,则这三条直线共面;④若三条直线交于同一点,则这三条直线共面.其中真命题的序号是________.7.将一个真命题中的“平面”换成“直线”“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是________.(填命题的序号)8.如图,平面α∥平面β∥平面γ,两条直线a,b分别与平面α,β,γ相交于点A,B,C和点D,E,F.已知AB=2 cm,DE=4 cm,EF=3 cm,则AC的长为________cm.9.如图,在三棱锥SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过点A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC.(2)BC⊥SA. 10.如图,在四棱锥PABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,点E,F分别为AB和PC的中点,连接EF,BF.(1)求证:直线EF∥平面PAD.(2)求三棱锥FPEB的体积. B级 能力提升练11.如图,在四棱锥PABCD中,四边形ABCD为平行四边形,E为AD的中点,F为PC上一点,当PA∥平面EBF时,=( )A. B.C. D. 12.如图,在棱长为1的正方体ABCDA1B1C1D1中,点E,F分别是棱BC,CC1的中点,P是侧面BCC1B1内一点,若A1P∥平面AEF,则线段A1P长度的取值范围是( )A. B.C. D.[,] 13.如图,ABCDA1B1C1D1是棱长为a的正方体,M,N分别是棱A1B1,B1C1的中点,P是棱AD上一点,AP=,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=( )A.a B.aC.a D.a14.在四面体ABCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.15.如图,在正四棱柱ABCDA1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH上及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1(注:填上你认为正确的一个条件即可). 16.如图,平面五边形ABCDE中,AB∥CE,且AE=2,∠AEC=60°,CD=ED=,cos∠EDC=.将△CDE沿CE折起,使点D到P的位置,且AP=,得到四棱锥PABCE.(1)求证:AP⊥平面ABCE;(2)记平面PAB与平面PCE相交于直线l,求证:AB∥l. C级 素养加强练17.如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,E,F分别在BC,AD上,EF∥AB,现将四边形ABEF沿EF折起,使BE⊥EC.(1)若BE=1,在折叠后的线段AD上是否存在一点P,使得CP∥平面ABEF?若存在,求出的值;若不存在,说明理由;(2)求三棱锥ACDF的体积的最大值,并求出此时点F到平面ACD的距离.
相关试卷
这是一份高考数学一轮复习作业本7.2 直线、平面的平行关系(含答案),共7页。
这是一份高考数学(理数)一轮复习检测卷:8.3《直线与圆、圆与圆的位置关系》 (学生版),共3页。试卷主要包含了直线l,若直线l,圆C1,已知圆C,已知直线l等内容,欢迎下载使用。
这是一份高考数学(理数)一轮复习检测卷:7.3《直线、平面的垂直关系》 (学生版),共5页。