所属成套资源:高考数学(理数)一轮复习检测卷 (学生版)
高考数学(理数)一轮复习检测卷:6.4《合情推理与演绎推理》 (学生版)
展开
这是一份高考数学(理数)一轮复习检测卷:6.4《合情推理与演绎推理》 (学生版),共5页。试卷主要包含了观察下列等式等内容,欢迎下载使用。
限时规范训练(限时练·夯基练·提能练)A级 基础夯实练1.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )A.f(x) B.-f(x)C.g(x) D.-g(x)2.若a,b,c∈R,下列使用类比推理得到的结论正确的是( )A.“若a·2=b·2,则a=b”类比推出“若a·c=b·c,则a=b”B.“若(a+b)c=ac+bc”类比推出“(a·b)c=ac·bc”C.“若(a+b)c=ac+bc”类比推出“=+(c≠0)”D.“(ab)n=anbn”类比推出“(a+b)n=an+bn(n∈N*)”3.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+中“…”即代表无限次重复,但原式却是个定值,它可以通过方程1+=x求得x=.类似上述过程,则 =( )A.3 B.C.6 D.24.等差数列{an}的公差为d,前n项的和为Sn,则数列为等差数列,公差为.类似地,若各项均为正数的等比数列{bn}的公比为q,前n项的积为Tn,则等比数列{}的公比为( )A. B.q2C. D.5.从1开始的自然数按如图所示的规则排列,现有一个三角形框架在图中上下或左右移动,使每次恰有九个数在此三角形内,则这九个数的和可以为( )A.2 018 B.2 019C.2 020 D.2 0216.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,ai∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕的运算规则为0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.例如原信息为111,则传输信息为01111,信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( )A.11010 B.01100C.10111 D.000117.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )A.甲 B.乙C.丙 D.丁8.观察下列等式:ln 1=0,ln(2+3+4)=2ln 3,ln(3+4+5+6+7)=2ln 5,ln(4+5+6+7+8+9+10)=2ln 7,…则根据以上四个等式,猜想第n个等式为________.9.古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为=n2+n,记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数N(n,3)=n2+n,正方形数N(n,4)=n2,五边形数N(n,5)=n2-n,六边形数N(n,6)=2n2-n,…可以推测N(n,k)的表达式,由此计算N(10,24)=________. 10.已知O是△ABC内任意一点,连接AO,BO,CO并延长,分别交对边于A′,B′,C′,则++=1,这是一道平面几何题,其证明常采用“面积法”:++=++==1.请运用类比思想,对于空间中的四面体ABCD,存在什么类似的结论,并用“体积法”证明. B级 能力提升练11.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的算筹.在古代是用算筹来进行计数的,表示数的算筹有纵、横两种形式,如图所示.表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位、百位、万位上的数用纵式表示,十位、千位、十万位上的数用横式表示,以此类推.例如6 613用算筹表示就是,则9 117用算筹可表示为( ) 12.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n行有n个数且两端的数均为(n≥2),其余每个数是它下一行左右相邻两数的和,如=+,=+,=+,…,则第11行第2个数(从左往右数)为( ) …A. B.C. D.13.祖暅是我国南北朝时期的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆+=1(a>b>0)所围成的平面图形绕y轴旋转一周后,得一橄榄状的几何体(称为椭球体)如图所示,课本中介绍了应用祖暅原理求球体体积公式的方法,请类比此法,求出椭球体体积,其体积等于________.14.已知函数f(x)=-.(1)证明函数y=f(x)的图象关于点对称;(2)求f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值. 15.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°cos 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+cos248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. C级 素养加强练16.有甲、乙二人去看望高中数学老师张老师,期间他们做了一个游戏,张老师的生日是m月n日,张老师把m告诉了甲,把n告诉了乙,然后张老师列出来如下10个日期供选择:2月5日,2月7日,2月9日,5月5日,5月8日,8月4日,8月7日,9月4日,9月6日,9月9日.看完日期后,甲说:“我不知道,但你一定也不知道.”乙听了甲的话后,说:“本来我不知道,但现在我知道了.”甲接着说:“哦,现在我也知道了.”请问,张老师的生日是________.
相关试卷
这是一份高考数学(理数)一轮复习检测卷:11.1《坐标系》 (学生版),共3页。试卷主要包含了在直角坐标系xOy中,直线C1等内容,欢迎下载使用。
这是一份高考数学(理数)一轮复习检测卷:8.5《双曲线》 (学生版),共3页。试卷主要包含了当双曲线M,已知F是双曲线C,已知双曲线C,设F1,F2分别为双曲线C等内容,欢迎下载使用。
这是一份高考数学(理数)一轮复习检测卷:8.4《椭圆》 (学生版),共4页。试卷主要包含了已知椭圆C等内容,欢迎下载使用。