初中数学冀教版七年级下册第九章 三角形综合与测试习题
展开
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试习题,共20页。试卷主要包含了下列图形中,不具有稳定性的是等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、三个等边三角形的摆放位置如图所示,若,则的度数为 A. B. C. D.2、若一个三角形的两边长分别为3和8,则第三边长可能是 ( )A.4 B.5 C.8 D.113、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )A.105° B.120° C.135° D.150°4、下列所给的各组线段,能组成三角形的是:( )A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,135、如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是( )A.BE是△ABD的中线 B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.S△AEB=S△EDB6、下列长度的三条线段能组成三角形的是( )A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,77、以下长度的线段能和长度为2,6的线段组成三角形的是( )A.2 B.4 C.6 D.98、下列图形中,不具有稳定性的是( )A. B.C. D.9、有下列长度的三条线段,其中能组成三角形的是( )A.4,5,9 B.2.5,6.5,10 C.3,4,5 D.5,12,1710、如图,图形中的的值是( )A.50 B.60 C.70 D.80第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,,,BE平分交AD于点E,连接CE,AF交CD的延长线于点F,,若,,则的度数为______.2、ABC的三边长为a、b、c,且a、b满足a2﹣4a+4+=0,则c的取值范围是______.3、如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是80,则△ABE的面积是________.4、如图:中,,,于D,CE平分,于F,则______°.5、如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是 _____.三、解答题(5小题,每小题10分,共计50分)1、在中,平分平分,求的度数.2、如图,在三角形ABC中,∠ABC与∠ACB的角平分线交于点P(1)当∠A=60°时,求∠BPC的的度数;(提示:三角形内角和180°);(2)当∠A=α°时,直接写出∠A与∠BPC的数量关系.3、已知三角形的两边长分别是4cm和9cm,如果第三边长是奇数,求第三边的长4、已知:如图,△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠AEC的度数.5、如图,ABCD,∠BMN与∠DNM的平分线相交于点G,完成下面的证明:∵MG平分∠BMN,∴∠GMN=∠BMN( ),同理∠GNM=∠DNM.∵ABCD∴∠BMN+∠DNM=________( ).∴∠GMN+∠GNM=________.∵∠GMN+∠GNM+∠G=________,∴∠G=________. -参考答案-一、单选题1、A【解析】【分析】利用三个平角的和减去中间三角形的内角和,再减去三个的角即可.【详解】解:,,,,,,故选:.【点睛】本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.2、C【解析】【分析】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【详解】解:∵一个三角形的两边长分别为3和8,∴5<第三边长<11,则第三边长可能是:8.故选:C.【点睛】此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.3、B【解析】【分析】由题意易得,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:,∴;故选B.【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.4、D【解析】【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.5、C【解析】【分析】根据三角形中线、角平分线的定义逐项判断即可求解.【详解】解:A、∵AE=DE,∴BE是△ABD的中线,故本选项不符合题意;B、∵BD平分∠EBC,∴BD是△BCE的角平分线,故本选项不符合题意;C、∵BD平分∠EBC,∴∠2=∠3,但不能推出∠2、∠3和∠1相等,故本选项符合题意;D、∵S△AEB=×AE×BC,S△EDB=×DE×BC,AE=DE,∴S△AEB=S△EDB,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形中线、角平分线的定义,熟练掌握三角形中,连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.6、C【解析】【分析】根据三角形的三边关系,逐项判断即可求解.【详解】解:A、因为 ,所以不能组成三角形,故本选项不符合题意;B、因为 ,所以不能组成三角形,故本选项不符合题意;C、因为 ,所以能组成三角形,故本选项符合题意;D、因为 ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.7、C【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】解:设第三边的长为,已知长度为2,6的线段,根据三角形的三边关系可得,,即,根据选项可得∴故选C【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.8、B【解析】【分析】由三角形的稳定性的性质判定即可.【详解】A选项为三角形,故具有稳定性,不符合题意,故错误;B选项为四边形,非三角形结构,故不具有稳定性,符合题意,故正确;C选项为三个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误;D选项为两个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误.故选B.【点睛】本题考查了三角形的稳定性,如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个特征,叫做三角形的稳定性注意①要看图形是否具有稳定性,关键在于它的结构是不是三角形结构②除了三角形外,其他图形都不具备稳定性,因此在生产建设中,三角形的应用非常广泛.9、C【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,得,、,不能够组成三角形,不符合题意;、,不能够组成三角形,不符合题意;、,能够组成三角形,符合题意;、,不能组成三角形,不符合题意;故选:C.【点睛】此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.10、B【解析】【分析】根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.【详解】解:由题意得: ∴,∴,故选B.【点睛】本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.二、填空题1、80°##80度【解析】【分析】先根据,,得出,可证AD∥BC,再证∠BAD=∠BCD,得出∠AEB=∠F,然后证∠ABC=2∠CBE=2∠F,得出∠ADC=2∠F,利用三角形内角和得出∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,根据平角得出∠AEB+∠CED=180°-∠BEC=180°-80°=100°,列方程∠F+180°-5∠F=100°求出∠F=20°即可.【详解】解:∵,∴∠ABC+∠BCD=180°,∵∴,∴AD∥BC,∵,∴∠BAD+∠ADC=180°,∠BAF+∠F=180°,∵∠ADC+∠BCD=180°,∴∠BAD=∠BCD,∵,∴,∵∠BAF=∠BAD+∠DAF,∴∠BAF+∠AEB=180°,∴∠AEB=∠F,∵AD∥BC,∴∠CBE=∠AEB,∵BE平分,∴∠ABC=2∠CBE=2∠F,∴∠ADC=2∠F,∵,在△CED中,∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,∵,∴∠AEB+∠CED=180°-∠BEC=180°-80°=100°,∴∠F+180°-5∠F=100°,解得∠F=20°,∴,故答案为80°.【点睛】本题考查平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,掌握平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,关键是证出∠ADC=2∠F.2、2<c<6【解析】【分析】根据非负数的性质得到,,再根据三角形三边的关系得.【详解】解:,∴,,,所以,故答案为:【点睛】本题主要考查了三角形的三边关系,以及非负数的性质,解题的关键是求出,的值,熟练掌握三角形的三边关系.3、20【解析】【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可解答.【详解】解:∵AD是BC上的中线,∴S△ABD=S△ACD=S△ABC,∵BE是△ABD中AD边上的中线,∴S△ABE=S△BED=S△ABD,∴S△ABE=S△ABC,∵△ABC的面积是80,∴S△ABE=×80=20.故答案为:20.【点睛】本题主要考查了三角形面积的求法,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.4、805、在三角形中,两边之和大于第三边【解析】【分析】根据三角形两边之和大于第三边进行求解即可.【详解】解:∵点A、B在直线l上,点C是直线l外一点,∴A、B、C可以构成三角形,∴由三角形三边的关系:在三角形中,两边之和大于第三边可以得到:CA+CB>AB,故答案为:在三角形中,两边之和大于第三边.【点睛】本题主要考查了三角形三边的关系,熟知三角形中两边之和大于第三边是解题的关键.三、解答题1、【解析】【分析】根据外角的性质,求得,根据角平分线的定义可得,根据三角形的内角和求得,角平分线的性质可得,根据三角形内角和即可求解.【详解】解:∵,∴,∵平分∴,由三角形内角和的性质可得,,∵平分∴,由三角形内角和的性质可得,.【点睛】此题考查了三角形内角和的性质、外角的性质以及角平分线的定义,解题的关键是掌握并灵活运用相关性质进行求解.2、 (1)120°(2)∠BPC=【解析】【分析】(1)根据BP是∠ABC的平分线,得出∠PBC=.根据CP是∠ACB的平分线,∠PCB=,根据∠A=60°,得出=120°,求∠PBC+∠PCB==60°即可;(2)根据BP是∠ABC的平分线,得出∠PBC=.根据CP是∠ACB的平分线,得出∠PCB=,根据∠A=α°,得出=180°-α°,可求∠PBC+∠PCB=即可.(1)解:如图,∵BP是∠ABC的平分线,∴∠PBC=.(角平分线定义)∵CP是∠ACB的平分线,∴∠PCB=,∴∠PBC+∠PCB= ,∵∠A=60°,∴=120°,∴∠PBC+∠PCB==60°,∴∠BPC=180°-∠PBC-∠PCB=180°-(∠PBC+∠PCB)=180°-60°=120°.(2)如图,∵BP是∠ABC的平分线,∴∠PBC=.(角平分线定义)∵CP是∠ACB的平分线,∴∠PCB=,∴∠PBC+∠PCB=,∵∠A=α°,∴=180°-α°,∴∠PBC+∠PCB=,∴∠BPC=180°-∠PBC-∠PCB=180°-(∠PBC+∠PCB)=180°-90°=90°.∴∠BPC=.【点睛】本题考查角平分线定义,三角形内角和,掌握角平分线定义,三角形内角和是解题关键.3、第三边长为7cm或9cm或11cm【解析】【分析】设三角形的第三边长为xcm,根据三角形的三边关系确定x的范围,然后根据题意可求解.【详解】解:设三角形的第三边长为xcm,由三角形的两边长分别是4cm和9cm可得:,即为,∵第三边长是奇数,∴或9或11.【点睛】本题主要考查三角形的三边关系,熟练掌握三角形的三边关系是解题的关键.4、∠AEC=115°【解析】【分析】利用三角形的内角和定理求解 再利用三角形的高的含义求解 再结合角平分线的定义求解 再利用三角形的内角和定理可得答案.【详解】解: ∠BAC=80°,∠B=60°, AD⊥BC, AE平分∠DAC, 【点睛】本题考查的是三角形的高,角平分线的含义,三角形的内角和定理的应用,熟练的运用三角形的高与角平分线的定义结合三角形的内角和定理得到角与角之间的关系是解本题的关键.5、角分线的定义;180°;两直线平行,同旁内角互补;90°;180°;90°【解析】【分析】根据角平分线的定义,可得∠GMN=∠BMN,∠GNM=∠DNM. 再由ABCD,可得∠BMN+∠DNM=180°,从而得到∠GMN+∠GNM=90°.然后根据三角形的内角和定理,即可求解.【详解】证明:∵MG平分∠BMN, ∴∠GMN=∠BMN(角分线的定义),同理∠GNM=∠DNM.∵ABCD,∴∠BMN+∠DNM=180°(两直线平行,同旁内角互补).∴∠GMN+∠GNM=90°.∵∠GMN+∠GNM+∠G=180°,∴∠G=90°.【点睛】本题主要考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟练掌握相关知识点是解题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课后测评,共22页。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试测试题,共21页。试卷主要包含了如图,直线l1l2,被直线l3,下列叙述正确的是,如图,在ABC中,点D,如图,已知△ABC中,BD等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试巩固练习,共24页。试卷主要包含了如图,在中,若点使得,则是的,如图,是的中线,,则的长为,如图,在中,,,则外角的度数是,已知△ABC的内角分别为∠A等内容,欢迎下载使用。