冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试习题
展开
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试习题,共17页。
第十章一元一次不等式和一元一次不等式组达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若成立,则下列不等式成立的是( )A. B.C. D.2、下列各数中,是不等式的解的是( )A.﹣7 B.﹣1 C.0 D.93、不等式的最小整数解是( )A. B.3 C.4 D.54、﹣(﹣a)和﹣b在数轴上表示的点如图所示,则下列判断正确的是( )A.﹣a<1 B.b﹣a>0 C.a+1>0 D.﹣a﹣b<05、若a>b>0,c>d>0,则下列式子不一定成立的是( )A.a﹣c>b﹣d B. C.ac>bc D.ac>bd6、某种商品进价为20元,标价为30元出售,商场规定可以打折销售,但其利润率不能少于5%,这种商品最多可以按几折销售?设这种商品打x折销售,则下列符合题意的不等式是( )A.30x﹣20≥20×5% B.30x﹣20≤20×5%C.30×﹣20≥20×5% D.30×﹣20≤20×5%7、三角形的三边长分别为2,,5,则x的取值范围是( )A. B. C. D.8、一只纸箱质量为,放入一些苹果后,纸箱和苹果的总质量不能超过.若每个苹果的质量为,则这只纸箱内能装苹果( )A.最多27个 B.最少27个 C.最多26个 D.最少26个9、若m>n,则下列不等式不成立的是( )A.m+4>n+4 B.﹣4m<﹣4n C. D.m﹣4<n﹣410、不等式组的最小整数解是( )A.5 B.0 C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式组的解集为 ______.2、已知x为不等式组的解,则的值为______.3、不等式的非负整数解为__.4、像这样,关于同一未知数的两个一元一次不等式合在一起,就组成一个__________.5、安排学生住宿,若每间住3人,则还有13人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为_____.三、解答题(5小题,每小题10分,共计50分)1、根据不等式的性质,将下列不等式化成“x>a”或“x<a”的形式.10x-1>7x2、某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.(1)该超市购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元,求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x正整数),求有哪几种购买方案.3、用不等式表示下列数量关系:(1)a是正数;(2)x比-3小;(3)两数m与n的差大于54、说出下列不等式变形的依据:(1)由x-1>2,得x>3;(2)由-2x>-4,得x<2;(3)由-x<-1,得x>2;(4)由3x<x,得2x<0.5、快递员把货物送到客户手中称为送件,帮客户寄出货物称为揽件.快递员的提成取决于送件数和揽件数.某快递公司快递员小李若平均每天的送件数和揽件数分别为80件和20件,则他平均每天的提成是160元;若平均每天的送件数和揽件数分别为120件和25件,则他平均每天的提成是230元(1)求快递员小李平均每送一件和平均每揽一件的提成各是多少元;(2)已知快递员小李一周内平均每天的送件数和揽件数共计200件,且揽件数不大于送件数的.如果他平均每天的提成不低于318,求他平均每天的送件数. -参考答案-一、单选题1、C【解析】【分析】根据不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变解答.【详解】解:A、不等式a>b两边都乘-1,不等号的方向没有改变,不符合题意;B、不等式a>b两边都乘-1,不等号的方向没有改变,不符合题意;C、不等式a>b两边都乘2,不等号的方向不变,都减1,不等号的方向不变,符合题意;D、因为≥0,当=0时,不等式a>b两边都乘,不等式不成立,不符合题意;故选:C.【点睛】本题考查了不等式的基本性质.不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.2、D【解析】【分析】移项、合并同类项,得到不等式的解集,再选取合适的x的值即可.【详解】解:移项得:,∴9为不等式的解,故选D.【点睛】本题考查的是解一元一次不等式,熟知去分母,去括号,移项,合并同类项,化系数为1是解一元一次不等式的基本步骤是解答此题的关键.3、C【解析】【分析】先求出不等式解集,即可求解.【详解】解: 解得: 所以不等式的最小整数解是4.故选:C.【点睛】本题考查了一元一次不等式的解法,正确解不等式,求出解集是解决本题的关键.4、B【解析】【分析】化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,∵a<﹣1,∴﹣a>1,故A选项判断错误,不合题意;∵﹣b<0,∴b>0,b﹣a>0,故B正确,符合题意;∵a<﹣1,∴a+1<0,故C判断错误,不合题意;∵a<﹣b,∴a+b<0,∴﹣a﹣b>0,故D判断错误,不合题意.故选:B.【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.5、A【解析】【分析】根据不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【详解】解:.当,,,时,,故本选项符合题意;.若,,则,故本选项不合题意;.若,,则,故本选项不合题意;.若,,则,故本选项不合题意;故选:A.【点睛】本题主要考查了不等式的性质,解题的关键是注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.6、C【解析】【分析】根据题意易得这种商品的利润为30×﹣20,然后根据“其利润率不能少于5%”可列出不等式.【详解】解:设这种商品打x折销售,由题意得:30×﹣20≥20×5%;故选C.【点睛】本题主要考查一元一次不等式的应用,解题的关键是熟练掌握销售中的利润问题.7、D【解析】【分析】三角形的任意两边之和大于第三边,任意两边之差小于第三边,根据原理列不等式组,再解不等式组即可得到答案.【详解】解: 三角形的三边长分别为2,,5, 由①得: 由②得:所以: 所以x的取值范围是故选D【点睛】本题考查的是三角形三边的关系,掌握“利用三角形的三边关系列不等式组”是解本题的关键.8、C【解析】【分析】设这只纸箱内能装苹果x个,则根据不等关系:纸箱质量+所装苹果质量≤9,可建立不等式,解不等式即可,从而可得结果.【详解】设这只纸箱内能装苹果x个,由题意可得:1+0.3x≤9解不等式得:由于x只能取正整数所以x为不超过26的正整数时,均满足纸箱和苹果的总质量不能超过即这只纸箱内最多能装苹果26个故选:C【点睛】本题考查了一元一次不等式的应用,根据题意找出不等关系并列出不等式是关键,但要注意所求量为整数.9、D【解析】【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A.∵m>n,∴m+4>n+4,故该选项正确,不符合题意;B.∵m>n,∴,故该选项正确,不符合题意;C.∵m>n,∴,故该选项正确,不符合题意;D.∵m>n,∴,故该选项错误,符合题意;故选:D.【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.10、C【解析】【分析】分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可.【详解】解:解不等式,得:,解不等式,得:,故不等式组的解集为:,则该不等式组的最小整数解为:.故选:C.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题1、1≤x<7【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式x﹣3<4,得:x<7,解不等式≥1,得:x≥1,则不等式组的解集为1≤x<7,故答案为:1≤x<7.【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2、2【解析】【分析】解不等式组得到x的范围,再根据绝对值的性质化简.【详解】解:,解不等式①得:,解不等式②得:,∴不等式组的解集为:,∴===2故答案为:2.【点睛】本题考查了解不等式组,绝对值的性质,解题的关键是解不等式组得到x的范围.3、0,1【解析】【分析】根据不等式的性质进行解答即可得,再根据非负整数的定义“正整数和0统称为非负整数”即可得.【详解】解:,,,,所以不等式的非负整数解是0,1,故答案为:0,1.【点睛】本题考查了解不等式,非负整数,解题的关键是掌握解不等式和非负整数的定义.4、一元一次不等式组【解析】略5、5或6【解析】【分析】设共有间宿舍,则共有个学生,然后根据每间住6人,则还有一间不空也不满,列出不等式组进行求解即可.【详解】解:设共有间宿舍,则共有个学生,依题意得:,解得:.又为正整数,或6.故答案为:5或6.【点睛】本题主要考查了一元一次不等式组的应用,解题的关键在于能够准确根据题意列出不等式组进行求解.三、解答题1、x>【解析】【分析】根据不等式的性质,可得答案.【详解】解:10x-1>7x,两边都减7x、加1,得10x-7x-1+1>7x-7x+1,3x>1,两边都除以3,得x>;【点睛】本题考查了不等式的性质,熟记不等式的性质是解题关键.2、 (1)的值为10,的值为14(2)共有3种购买方案,方案1:购进58千克甲种蔬菜,42千克乙种蔬菜;方案2:购进59千克甲种蔬菜,41千克乙种蔬菜;方案3:购进60千克甲种蔬菜,40千克乙种蔬菜【解析】【分析】(1)由购进甲种蔬菜15千克和乙种蔬菜20千克的费用=430元;购进甲种蔬菜10千克和乙种蔬菜8千克的费用=212元,再列二元一次方程组解答;(2)利用投入资金不少于1160元又不多于1168元,确定不等关系列一元一次不等式组求解.(1)解:依题意,得:,解得:.答:的值为10,的值为14.(2)解:依题意,得:,解得:.又∵x为正整数,∴可以为58,59,60,∴共有3种购买方案,方案1:购进58千克甲种蔬菜,42千克乙种蔬菜;方案2:购进59千克甲种蔬菜,41千克乙种蔬菜;方案3:购进60千克甲种蔬菜,40千克乙种蔬菜.【点睛】此题考查了二元一次方程组的实际应用,一元一次不等式组的实际应用,正确理解题意是解题的关键.3、 (1)a > 0(2)x <-3(3)m-n >5【解析】略4、 (1)见解析(2)见解析(3)见解析(4)见解析【解析】【分析】(1)根据等式两边加上(或减去)同一个数,不等号方向不变求解;(2)根据不等式两边乘以(或除以)同一个负数,不等号方向改变求解;(3)根据不等式两边乘以(或除以)同一个负数,不等号方向改变求解;(4)根据等式两边加上(或减去)同一个含有字母的式子,不等号方向不变求解.(1)解:由x-1>2,得x>3,不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;(2)解:由-2x>-4,得x<2,不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)解:由-x<-1,得x>2,不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(4)解:由3x<x,得2x<0,不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.【点睛】本题主要考查了不等式的性质,正确掌握不等式的性质是解题关键.5、 (1)快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元(2)他平均每天的送件数是160件或161件或162件或163件或164件【解析】【分析】(1)设快递员小李平均每送一件的提成是元,平均每揽一件的提成是元,列二元一次方程求解;(2)设他平均每天的送件数是件,则他平均每天的揽件数是件,列不等式组求解.(1)解:设快递员小李平均每送一件的提成是元,平均每揽一件的提成是元,根据题意得:,解得,答:快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元;(2)解:设他平均每天的送件数是件,则他平均每天的揽件数是件,根据题意得:,解得,是正整数,的值为160,161,162,163,164,答:他平均每天的送件数是160件或161件或162件或163件或164件.【点睛】此题考查了二元一次方程组的实际应用,一元一次不等式组的实际应用,正确理解题意是解题的关键.
相关试卷
这是一份初中数学第十章 一元一次不等式和一元一次不等式组综合与测试测试题,共17页。试卷主要包含了下列命题中,假命题是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试达标测试,共18页。试卷主要包含了已知关于x,关于x的方程3﹣2x=3等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十章 一元一次不等式和一元一次不等式组综合与测试达标测试,共20页。试卷主要包含了若,那么下列各式中正确的是,不等式﹣2x+4<0的解集是,已知关于x等内容,欢迎下载使用。