终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年冀教版八年级数学下册第二十章函数综合测评试卷(无超纲带解析)

    立即下载
    加入资料篮
    2021-2022学年冀教版八年级数学下册第二十章函数综合测评试卷(无超纲带解析)第1页
    2021-2022学年冀教版八年级数学下册第二十章函数综合测评试卷(无超纲带解析)第2页
    2021-2022学年冀教版八年级数学下册第二十章函数综合测评试卷(无超纲带解析)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十章 函数综合与测试随堂练习题

    展开

    这是一份冀教版八年级下册第二十章 函数综合与测试随堂练习题,共25页。试卷主要包含了在函数中,自变量x的取值范围是,函数中,自变量x的取值范围是等内容,欢迎下载使用。
    冀教版八年级数学下册第二十章函数综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、小江和小北两兄弟步行从家里去公园,小江先出发一段时间后小北再出发,途中小北追上了小江最终先到达公园,两人所走路程s(米)与小北出发后的时间t(分钟)的函数关系如图所示.下列说法正确的是( )A.表示的是小江步行的情况,表示的是小北步行的情况B.小江的速度是45米/分钟,小北的速度是60米/分钟C.小江比小北先出发16分钟.D.小北出发后8分钟追上小江2、函数y中的自变量x的取值范围是(  )A.x>0 B.x≥﹣1 C.x>0且x≠﹣1 D.x≥﹣1且x≠03、下列所描述的四个变化过程中,变量之间的关系不能看成函数关系的是(  )A.小车在下滑过程中下滑时间t和支撑物的高度h之间的关系B.三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系C.骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系D.一个正数x的平方根是yy随着这个数x的变化而变化,yx之间的关系4、甲、乙两车分别从相距280km的AB两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有(       A.1个 B.2个 C.3个 D.4个5、如图1,在菱形ABCD中,AB=6,∠BAD=120°,点EBC边上的一动点,点P是对角线BD上一动点,设PD的长度为xPEPC的长度和为y,图2是y关于x的函数图象,其中Hab)是图象上的最低点,则a+b的值为(  )A. B. C. D.366、在函数中,自变量x的取值范围是(       A. B. C. D.7、函数中,自变量x的取值范围是(       A. B. C. D.8、如图,一个矩形的长比宽多3cm,矩形的面积是Scm2.设矩形的宽为xcm,当x在一定范围内变化时,Sx的变化而变化,则Sx满足的函数关系是(        A.S=4x+6 B.S=4x-6 C.S=x2+3x D.S=x2-3x9、如图,在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线BCDA作匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致是(       A. B.C. D.10、甲、乙两只气球分别从不同高度同时匀速上升30min,气球所在的位置距离地面的高度h(单位:m)与气球上升的时间t(单位:min)之间的函数关系式如图所示.下列说法正确的是(       A.10min时,两只气球都上升了30m B.乙气球的速度为3m/minC.30min时,乙气球离地面的高度为60m D.30min时,甲乙两只气球的高度差为20m第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、山西近期遭遇严重洪涝灾害,万余间房屋倒塌.下图是汾河沿线某个村庄的受灾情况和蓝天救援队的排涝现场.某地需排水约,打开排水泵开始排水,排走的水量与排水时间的关系如下表所示.排水分钟后,剩下水量为________排水时间/分钟剩下的水量/ 2、如图1,正方形的边上有一定点,连接.动点从正方形的顶点出发,沿着的方向以2cm/s的速度匀速运动到终点.图2是点运动时,的面积随时间变化的全过程图象,则的长度为______cm.3、设路程为s,时间为t,速度为v,当v=60时,路程和时间的关系式为__________,这个关系式中, __________是常量,__________是变量,__________是__________的函数.4、如图,在 RtABC中,∠ACB=90°,BC=4cm,AC=9cm,点 D在线段 CA上从点C出发向点A方向运动(点 D不与点 A,点C重合),且点D运动的速度为2cm/s,现设运动时间为 x(0<x)秒时,对应的 △ABD 的面积为ycm²,则当x=2 时,y=_________ ;yx之间满足的关系式为_________.5、如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么在中是变量的是______.三、解答题(5小题,每小题10分,共计50分)1、七年级下册第三章中有如下三个问题,能否将其中变量之间的关系看成函数?(1)小车下滑过程中下滑时间与支撑物高度之间的关系;(2)三角形一边上的高一定时,三角形面积与该边的长度之间的关系;(3)骆驼某日体温随时间的变化曲线所确定的温度与时间的关系.2、数学家欧拉最先把关于的多项式用记号来表示,例如,并把常数时多项式的值用来表示,例如时多项式的值记为(1)若规定的值是_________;②若的值是_________;(2)若规定①有没有能使成立的的值,若有,求出此时的值,若没有,请说明理由,②直接写出的最小值和此时满足的条件.3、已知:在Rt△ABC中,,左右作平行移动的等边三角形的两个顶点始终在边上,分别与相交于点(1)如图1,当点与点重合时,点恰好在斜边上,求的周长;(2)如图2,在作平行移动的过程中,图中是否存在与线段始终相等的线段?如果存在,请指出这条线段,并加以证明;如果不存在,请说明理由;(3)假设点与点的距离为的重叠部分的面积为,求的函数关系式,并写出定义域.4、长方形的一边长是,其邻边长为,周长是,面积为(1)写出之间的关系式(2)写出之间的关系式(3)当时,等于多少等于多少(4)当增加时,增加多少增加多少5、公交公司员工小明住在站点的员工宿舍,每天早上去站点上班,站到站唯一一条公交线路示意图如图1,是四个公交站点,其中两站相距的路程是1200米,为了健身,小明往往沿公交线路步行到站或站后再乘公交车上班.(1)星期一,小明步行到站上车,记他距站的路程为米,离开站的时间为分,关于的函数图象如图2,求的解析式及公交车的速度;(2)星期二,小明以与星期一相同出发时间和步行速度步行到站上车,已知公交车无论上行()还是下行()都每隔10分钟一班,每天始发时间和行车速度保持不变,乘客上下车时间忽略不计;①通过计算判断小明步行到达站时是否恰好有上行公交车到达站;②小明到达站所用时间是星期一的1.5倍,求两站相距的路程;③若小明步行至站时刚好遇见一辆下行班车,这一趟上班途中,直接写出他遇到下行班车的最短间隔时间. -参考答案-一、单选题1、C【解析】【分析】观察图象,可得:表示的是小北步行的情况,表示的是小江步行的情况,可得A错误;小江32分钟步行(1440-480)米,小北24分钟步行1440米,再根据该时间段内的速度等于路程除以时间,可得B错误;因为小江比小北先走480米,所以用480除以小江的速度30,可得C正确;设小北出发后 分钟追上小江,则 ,解出可得D错误,即可求解.【详解】解:根据题意得:A、因为小江先出发一段时间后小北再出发,所以表示的是小北步行的情况,表示的是小江步行的情况,故本选项不符合题意;B、小江的速度是米/分钟,小北的速度是米/分钟,故本选项不符合题意;C、观察图象,得:小江比小北先出发 分钟,故本选项符合题意;D、设小北出发后 分钟追上小江,则 ,解得: ,即小北出发后16分钟追上小江,故本选项不符合题意;故选:C【点睛】本题主要考查了函数图象的应用,准确从函数图象获取信息是解题的关键.2、D【解析】【分析】根据二次根式被开方数大于或等于0和分母不为0列不等式组即可.【详解】解:由题意得:x+1≥0x0解得:x-1x0故选:D【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.3、D【解析】【分析】根据函数的定义:在一个变化过程中,如果有两个变量xy,并且对于x的每一个确定的值,y都有唯一的值与之对应,则称x是自变量,yx的函数,由此进行逐一判断即可【详解】解:A、小车在下滑过程中下滑时间t和支撑物的高度h之间的关系,对于每一个确定的高度h,下滑时间t都有唯一值与之对应,满足函数的关系,故不符合题意;B、三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系,由面积s=边长×高,可知,对于每一个确定的边长,面积s都有唯一值与之对应,满足函数的关系,故不符合题意;C、骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系,对于每一个确定的时间,温度T都有唯一值与之对应,满足函数的关系,故不符合题意;D、∵一个正数x的平方根是y,对于每一个确定的xy都有两个值与之对应,不满足函数的关系,故符合题意;故选D.【点睛】本题主要考查了函数的定义,解题的关键在于能够熟练掌握函数的定义.4、B【解析】【分析】由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.【详解】解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;乙车行驶280千米需要的时间为:小时,所以甲车返回的速度为:千米/时,故②符合题意;小时,所以 故③符合题意,当乙车行驶2小时时,行驶的路程为:千米,此时甲车行驶1小时,千米,所以两车相距:千米,当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,距离A千米,所以两车相距千米,故④不符合题意;综上:故选B【点睛】本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.5、A【解析】【分析】从图2知,的最小值,从图1作辅助线知;接下来求出,设交于点,则求出,最后得,所以,选【详解】解:如下图,在边上取点,使得关于对称,连接,得连接,作,垂足为由三角形三边关系和垂线段最短知,有最小值菱形中,中,解得是图象上的最低点此时令交于点由于,在中,,又的长度为,图2中是图象上的最低点,故选:A.【点睛】本题考查动点及最小值问题,解题的关键是在于通过翻折点轴对称),然后利用三角形三边关系及垂线段最短原理,判断出最小值为6、C【解析】【分析】根据二次根式和分式有意义的条件列出不等式即可求解.【详解】解:根据题意可列不等式组为解得,故选:C.【点睛】本题考查了二次根式和分式有意义的条件,解题关键是明确二次根式被开方数大于或等于0,分母不得0.7、B【解析】【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x-2≥0且x−3≠0,解得故选:B【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.8、C【解析】【分析】先用x表示出矩形的长,然后根据矩形的面积公式即可解答.【详解】解:设矩形的宽为xcm,则长为(x+3)cm由题意得:S=xx+3)=x2+3x.故选C.【点睛】本题主要考查了列函数解析式,用x表示出矩形的长以及掌握矩形的面积公式成为解答本题的关键.9、B【解析】【分析】运用动点函数进行分段分析,当PBC上,PCD上以及PAD上时,分别求出函数解析式,再结合图象得出符合要求的解析式.【详解】解:点P从点B到点C,△ABP的面积S与点P运动的路程x之间的函数关系是:S×AB×BP×2xx因为从点C到点D,△ABP的面积一定:2×1÷2=1,所以S与点P运动的路程x之间的函数关系是:S=1(1≤x≤3);P从点D到点A,△ABP的面积S与点P运动的路程x之间的函数关系是:S×AB×AP×2×(4﹣x)=﹣x+4.所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:故选:B.【点睛】本题主要考查了动点问题的函数图像,考查了分类讨论思想的应用,解答此题的关键是分别判断出从点到点以及从点到点,△ABP的面积S与点P运动的路程x之间的函数关系.10、D【解析】【分析】根据题意和函数中的数据,可以计算出甲、乙两只气球的速度,然后即可判断各个选项中的说法是否正确.【详解】解:由图象可得,10min时,甲气球上升了m,乙气球上升了=20(m),故选项A错误;甲气球的速度为:÷(m/ min),乙气球的速度为:()÷(m/ min),故选项B错误;30min时,乙气球距离地面的高度是(m),故选项C错误;则30min时,两架无人机的高度差为:()−()=20(m),故选项D正确;故选:D.【点睛】本题考查一次函数的应用,计算出甲、乙两架无人机的速度是解答本题的关键,利用数形结合的思想解答.二、填空题1、26【解析】【分析】根据题意可得剩下的水量y=50−2t,故可求出放水12分钟后的水量.【详解】解:设剩下的水量为y,时间为t则可得y=50−2t∴放水12分钟后,水池中剩下的水量为:y=50−2×12=26m3故答案为:26.【点睛】本题考查了函数关系式的知识,解答本题的关键是根据题意确定函数关系式.2、2【解析】【分析】P在点D时,设正方形的边长为aa×a=18,解得a=6;当点P在点C时,×EP×6=12,解得EP=4,即EC=4,进而即可求解.【详解】解:当点P在点D时,由图象可知三角形APE的面积为18,设正方形的边长为ayAB×ADa×a=18,解得a=6;当点P在点C时,由图象可知三角形APE的面积为12,yEP×AB=×EP×6=12,解得EP=4,即EC=4,BE=6-4=2,故答案是:2.【点睛】本题考查的是动点函数图象问题,此类问题关键是弄清楚不同时间段,图象和图形的对应关系.3、     s=60t     60     ts     s     t【解析】4、          【解析】【分析】根据,代入数轴求解即可.【详解】解:根据题意得:∴当x=2 时,故答案为:【点睛】本题考查了动点问题的函数关系,根据题意得出解析式是关系.5、【解析】【分析】由题意根据篱笆的总长确定,即可得到周长、一边长及面积中的变量.【详解】解:篱笆的总长为60米,周长是定值,而面积和一边长是变量,故答案为:【点睛】本题考查常量与变量的知识,解题的关键是能够根据篱笆总长不变确定定值,然后确定变量.三、解答题1、(1)能;(2)能;(3)能.【解析】【分析】(1)(2)(3)分别可根据函数的概念:在一个变化过程中,如果有两个变量xy,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就说x是自变量,yx的函数;由此问题可求解.【详解】解:(1)由题意可知下滑的每一个时间t,都有一个对应的高度h,所以符合函数的概念;(2)由题意可知三角形的面积,由于h是一定值,故一个x对应一个S,所以符合函数的概念;(3)骆驼一个时间会对应一个体温,所以符合函数的概念;∴(1)(2)(3)都可以看出函数.【点睛】本题主要考查函数的概念,熟练掌握函数的概念是解题的关键.2、 (1)①-5;②5,(2)①有,x=,见解析;②的最小值是5,-3≤x≤2【解析】【分析】(1)①当x=-1时,计算②计算,求得x即可;(2)①,解方程即可;表示动点x到2和-3的距离和,按照x>2,x<-3,-3≤x≤2分别计算比较结果即可.(1)(1)①∵∴当x=-1时, =-5,的值是-5,故答案为:-5;②∵=7,x=5,故答案为:5;(2)①有,x=,理由如下:,且,无解;解得x=故当x=时,②设动点P表示的数为x,点A表示的数是-3,点B表示的数2,表示数轴上动点P到点A和点B的距离和即PA+PBx>2时,如图所示,PA+PBAB=2-(-3)=5;x<-3时,如图所示,PA+PBAB=2-(-3)=5;当-3≤x≤2时,如图所示,PA+PB=x+3+2-x=5=AB=2-(-3)=5;故当-3≤x≤2时,有最小值,且为5.【点睛】本题考查了求函数值,自变量的值,解方程,绝对值的化简,数轴上的动点问题,熟练掌握绝对值的化简,数轴上的动点问题是解题的关键.3、 (1)△DEF的周长为9(2)存在,.证明见解析(3)【解析】【分析】(1)根据已知条件求出AC及∠A的度数,由等边三角形求出∠ADC=90°,求出CD即可得到周长;(2)根据边长求出CF+BE=3,根据等边三角形的性质求出,得到EG=BE,由,得到(3)分别求出△DEF与△DGH的面积,两者相减即可得到函数解析式.(1)解:在中,是等边三角形,的周长(2)解:结论:理由:是等边三角形,(3)【点睛】此题考查了等边三角形的性质,平移的性质,等角对等边证明边相等,直角三角形的性质,利用公式求三角形的面积,求函数解析式,正确掌握直角三角形的性质及等边三角形的性质是解题的关键.4、(1);(2);(3);(4)当增加时,增加增加【解析】【分析】(1)根据长方形周长公式进行求解即可;(2)根据长方形面积公式进行求解即可;(3)根据(2)求得的结果把代入先求出x的值,即可求值y的值;(4)把代入(1)(2)中求得的y以及S关于x的表达式中求出变化后的周长和面积,由此求解即可.【详解】解:(1)由长方形的周长公式,得(2)由长方形的面积公式,得(3)∵时,(4)当增加时,增加增加【点睛】本题主要考查了列代数式,整式的加减计算,代数式求值,解一元一次方程,解题的关键在于能够根据题意列出关于周长和面积的代数式.5、(1) 公交车的速度为:分;(2)①小明步行到达站时恰好有上行公交车到达站;②两站相距的路程是6600米;③分钟【解析】【分析】(1)由图象上点可得小明步行的速度,从而可得函数解析式;由点的含义可得公交车的速度;(2)①先计算小明步行到达站需要分,再计算上行公交车到达站需要分,而,从而可得小明步行到达站时恰好有上行公交车到达站;②设小明星期一所用时间为,星期二到达站所用时间为,可得,再利用列方程,再解方程即可得到答案;③由每隔10分钟一班,每辆公交车相距米,而步行的速度小于坐车时的速度,可得最短时间间隔发生在坐车时,从而可得答案.【详解】解:(1)由图象可知,小明步行的速度为(米分),的解析式为公交车的速度为(米分);(2)①小明步行到达站需要(分上行公交车到达站需要(分小明步行到达站时恰好有上行公交车到达站;②设小明星期一所用时间为,星期二到达站所用时间为由题可知小明到达站所用时间是星期一的1.5倍,解得两站相距的路程是6600米;每隔10分钟一班,每辆公交车相距(米步行的速度小于坐车时的速度,最短时间间隔发生在坐车时,间隔时间为(分钟).【点睛】本题考查的是从函数图象中获取信息,列函数关系式,一元一次方程的应用,理解题意与理解函数图象上点的坐标含义是解题的关键. 

    相关试卷

    冀教版八年级下册第二十章 函数综合与测试综合训练题:

    这是一份冀教版八年级下册第二十章 函数综合与测试综合训练题,共24页。试卷主要包含了当时,函数的值是等内容,欢迎下载使用。

    冀教版八年级下册第二十章 函数综合与测试巩固练习:

    这是一份冀教版八年级下册第二十章 函数综合与测试巩固练习,共21页。

    2020-2021学年第二十章 函数综合与测试同步达标检测题:

    这是一份2020-2021学年第二十章 函数综合与测试同步达标检测题,共25页。试卷主要包含了函数中,自变量x的取值范围是,下列图像中表示是的函数的有几个等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map