![2021-2022学年度强化训练冀教版八年级数学下册第二十章函数综合练习试卷(精选含答案)第1页](http://m.enxinlong.com/img-preview/2/3/12765469/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版八年级数学下册第二十章函数综合练习试卷(精选含答案)第2页](http://m.enxinlong.com/img-preview/2/3/12765469/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版八年级数学下册第二十章函数综合练习试卷(精选含答案)第3页](http://m.enxinlong.com/img-preview/2/3/12765469/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版八年级下册第二十章 函数综合与测试课时练习
展开
这是一份冀教版八年级下册第二十章 函数综合与测试课时练习,共22页。试卷主要包含了函数的图象如下图所示等内容,欢迎下载使用。
冀教版八年级数学下册第二十章函数综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图象中,表示y是x的函数的个数有( )A.1个 B.2个 C.3个 D.4个2、小明家到学校5公里,则小明骑车上学的用时t与平均速度v之间的函数关系式是( )A. B. C. D.3、速度分别为100km/h和akm/h(0<a<100)的两车分别从相距s千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y(km)与行驶时间t(h)之间的函数关系如图所示.下列说法:①a=60;②b=2;③c=b+;④若s=40,则b=.其中说法正确的是( )A.①②③ B.①④ C.①② D.①③4、变量x与y之间的关系是,当时,自变量x的值是( )A.13 B.5 C.2 D.35、如图1所示,直角三角形中,,且.设直线截此三角形所得的阴影部分面积为,与之间的函数关系的图象为图2所示,则的周长为( )A. B. C. D.6、下列关系中,一定能称是x的函数的是( )A.y2=4x B.|y|=x-2 C.y=|x|-3 D.y4=64x7、甲、乙两车分别从相距280km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有( )A.1个 B.2个 C.3个 D.4个8、函数的图象如下图所示:其中、为常数.由学习函数的经验,可以推断常数、的值满足( )A., B.,C., D.,9、下列曲线中,表示y是x的函数的是( )A. B.C. D.10、在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、函数y=中自变量x的取值范围是______.2、如图①,底面积为30cm²的空圆柱容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②.若“几何体”的下方圆柱的底面积为15cm²,求“几何体”上方圆柱体的底面积为____________.3、设路程为s,时间为t,速度为v,当v=60时,路程和时间的关系式为__________,这个关系式中, __________是常量,__________是变量,__________是__________的函数.4、小红参加一次象棋比赛,规定胜一局得2分,平一局得1分,负一局得0分,她一共比赛了20局,得了30分,设她胜了x局,平了y局,则y与x之间的函数关系式是______,其中x的取值范围是______.5、下面是王刚和李明两位同学的行程图,如果两人同时在同一地点出发,沿着200米的环形跑道同向行走,那么( )分钟后两人首次相遇.三、解答题(5小题,每小题10分,共计50分)1、指出下列问题中的变量和常量:(1)某市的自来水价为4元/t.现要抽取若干户居民调查水费支出情况,记某户月用水量为吨,月应交水费为y元.(2)某地手机通话费为0.2元/.李明在手机话费卡中存入30元,记此后他的手机通话时间为,话费卡中的余额为w元.(3)水中涟漪(圆形水波)不断扩大,记它的半径为r,周长为C,圆周率(圆周长与直径之比)为.(4)把10本书随意放入两个抽昼(每个抽屉内都放),第一个抽屉放入x本,第二个抽屉放入y本.2、(1)画出函数的图象.(2)设是x轴上的一个动点,它与x轴上表示的点的距离为y.求y关于x的函数解析式,并画出这个函数的图象.3、一艘轮船在静水中的最大航速为,它以最大航速沿江顺流航行所用时间,与以最大航速逆水航行所用时间相等.(1)求江水的流速为多少?(2)若江水的流速不变,设轮船在静水中的速度为,轮船用一样的时间沿江顺水航行,比逆水航行的航程多,请写出与的关系式.4、甲、乙两车从城出发沿一条笔直公路匀速行驶至城,在整个行驶过程中,甲、乙两车离开城的距离与甲车行驶的时间之间的函数关系如图所示.(1)、两城相距_____千米,乙车比甲车早到______小时;(2)求出点坐标;(3)两车都在行驶的过程中,当甲、乙两车相距40千米时,_____.5、将长为、宽为的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为. (1)根据图,将表格补充完整:白纸张数纸条长度 (2)设张白纸黏合后的总长度为,则与之间的关系式是什么?(3)你认为白纸黏合起来总长度可能为吗?为什么? -参考答案-一、单选题1、B【解析】【分析】根据函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量,据此判断即可.【详解】解:属于函数的有故y是x的函数的个数有2个,故选:B.【点睛】本题考查了函数的定义,熟记定义是本题的关键.2、D【解析】【分析】根据速度,时间与路程的关系得出,变形即可.【详解】解:根据速度,时间与路程的关系得∴.故选D.【点睛】本题考查列函数关系式,掌握速度,时间与路程的关系得出是解题关键.3、D【解析】【分析】①利用“速度=路程÷时间”可求出两车的速度差,结合快车的速度即可求得a值,即可判断①;②利用“时间=两车之间的距离÷两车速度差”可得出b值,由s不确定可得出b值不确定即可判断②;③利用“两车第二次相遇的时间=快车转向时的时间+两车之间的距离÷两车的速度之和”可得出c值,即可判断③;④由②的结论结合s=40可得出b值,即可判定④.【详解】解:①两车的速度之差为80÷(b+2﹣b)=40(km/h),∴a=100﹣40=60,结论①正确;②两车第一次相遇所需时间=(h),∵s的值不确定,∴b值不确定,结论②不正确;③两车第二次相遇时间为b+2+=b+(h),∴c=b+,结论③正确;④∵b=,s=40,∴b=1,结论④不正确.故选:D.【点睛】本题主要考查了一次函数的应用,掌握数形结合思想成为解答本题的关键.4、C【解析】【分析】直接把y=5代入y=2x+1,解方程即可.【详解】解:当y=5时,5=2x+1,解得:x=2,故选:C.【点睛】本题考查了函数值,解题的关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.5、D【解析】【分析】由函数图象可得:阴影部分的最大面积为:3, 再利用面积公式求解 再利用勾股定理求解 从而可得答案.【详解】解:由函数图象可得:阴影部分的最大面积为:3, ,且, 解得: (负根舍去) 所以的周长为: 故选D【点睛】本题考查的是从函数图象中获取信息,等腰直角三角形的性质,勾股定理的应用,二次根式的化简与加减运算,灵活应用以上知识解题是关键.6、C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数.【详解】解:根据函数概念可得:在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应可得C中y是x的函数,故选:C.【点睛】此题主要考查了函数的概念,关键是掌握函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.7、B【解析】【分析】由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.【详解】解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;乙车行驶280千米需要的时间为:小时,所以甲车返回的速度为:千米/时,故②符合题意;由小时,所以 故③符合题意,当乙车行驶2小时时,行驶的路程为:千米,此时甲车行驶1小时,千米,所以两车相距:千米,当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,距离A地千米,所以两车相距千米,故④不符合题意;综上:故选B【点睛】本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.8、B【解析】【分析】由题意根据图象可知,当x>0时,y<0,可知a<0;x=b时,函数值不存在,则b>0.【详解】解:由图象可知,当x>0时,y<0,∵,∴ax<0,a<0;x=b时,函数值不存在,即x≠b,结合图象可以知道函数的x取不到的值大概是在1的位置,∴b>0.故选:B.【点睛】本题考查函数的图象性质,能够通过已学的反比例函数图象确定b的取值是解题的关键.9、C【解析】【分析】根据函数的定义可知,满足对于的每一个取值,都有唯一确定的值与之对应关系,据此即可确定答案.【详解】解:A、对于的每一个取值,可能有两个值与之对应,不符合题意;B、对于的每一个取值,可能有两个值与之对应,不符合题意;C、对于的每一个取值,都有唯一确定的值与之对应,符合题意;D、对于的每一个取值,可能有两个值与之对应,不符合题意;故选:【点睛】本题主要考查了函数概念,关键是掌握在一个变化过程中有两个变量与,对于的每一个确定的值,都有唯一的值与其对应,那么就说是的函数,是自变量.10、D【解析】【分析】根据题意分析出 托运费y与物品重量x之间的函数关系,画出图像即可.【详解】解:由题意可得,当时,,∵物品重量每增加1kg(不足1kg按1kg计)需增加托运费0.5元,∴托运费y与物品重量x之间的函数图像为:故选:D.【点睛】此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y与物品重量x之间的函数关系.二、填空题1、x1且x-3【解析】【分析】根据分母不为0,被开方数大于等于0,进行计算即可.【详解】解:由题意得:1-x0,且x+30,∴x1且x-3,2、24cm²【解析】【分析】从注水24秒到42秒这一段,根据水面升高的高度及圆柱的体积公式,可求得注水的速度;从开始的18秒内的注水情况可求得“几何体”下方圆柱的高,即a的值,从而可得“几何体”上方圆柱的高,并计算出18秒到24秒注水的体积,设“几何体”上方圆柱的底面积为S,可得到关于S的方程,解方程即可求得S.【详解】由图②知,从注水24秒到42秒这一段,水面升高了14−11=3(cm),则共注水30×3=90(cm3),则注水的速度为90÷(42−24)=5(cm3/s);前18秒共注水18×5=90(cm3),则a=90÷(30−15)=6(cm);18秒到24秒共注水(24−18)×5=30(cm3),设“几何体”上方圆柱的底面积为S,则可得方程:(11−6)(30−S)=30解得:S=24即“几何体”上方圆柱的底面积为24cm2.故答案为:24cm²【点睛】本题考查了函数的图象,圆柱的体积等知识,读懂函数图象,图象中获取信息是关键;另外计算出注水速度也是本题的关键.3、 s=60t 60 t和s s t【解析】略4、 且x为自然数【解析】【分析】根据题意,由得分可得出答案.分2种情况,第一种是小红全胜,第二种根据得分,小红胜、平局存在,由方程组解出答案.【详解】解:①设小红胜了x局,平了y局,则负(20-x-y)局,由题意得:2x+y+0×(20-x-y)=30,2x+y=30,y=30-2x.②小红全胜,由题意得:30÷2=15根据得分,小红胜、平局存在,由题意得:,解得.故答案为:①y=30−2x,②10≤x≤15且x为自然数.【点睛】本题考查了根据题意列出一次函数关系式,做题的关键是弄清题意之间的等量关系.5、10【解析】【分析】先根据函数图象求出王刚和李明的速度,再根据关系式:路程=速度差×追及时间,列出方程解答即可.【详解】解:根据图象可得:王刚的速度为:(米/分)李明的速度为:(米/分)设x分钟后两人首次相遇,根据题意得, 解得, 所以,10分钟后两人首次相遇.故答案为:10【点睛】此题主要考查了函数图象以及一元一次方程的应用,找出等量关系列出方程是解答本题的关键.三、解答题1、(1)变量x,y;常量4.(2)变量t,w;常量0.2,30.(3)变量r,C;常量.(4)变量x,y;常量10.【解析】【分析】根据常量与变量的定义求解即可.【详解】解:(1)由题意可知,变量为x,y,常量为4;(2)由题意可知,变量为t,w,常量为0.2,30;(3)由题意可知,变量为r,C,常量为;(4)由题意可知,变量为x,y,常量为10.【点睛】本题考查常量与变量的定义,常量是指在变化过程中不随时间变化的量;变量是指在变化过程中随着时间变化的量.2、(1)见解析;(2),见解析【解析】【分析】(1)先列表,然后画出函数图像即可;(2)先根据题意求出函数解析式,然后列表,最后画出函数图像即可【详解】解:(1)由题意得:y=|x-1|,即y;x12y=x-101 x01y=-x+110 函数图象如图:(2)由题意得:y=|x-(-3)|=|x+3|,即y;x-3-2y=x+301 x-4-3y=-x-310 函数图象如图:【点睛】本题主要考查函数及其图像,掌握函数图象的画法是解题的关键.3、(1)江水的流速为6km/h;(2)(a>20).【解析】【分析】(1)根据题意可得顺水速度为(30+v)km/h,逆水速度为(30-v)km/h,根据题意可得等量关系:以最大航速沿江顺流航行90km所用时间=以最大航速逆流航行60km所用时间,根据等量关系列出方程求解即可;(2)根据题意可知沿江顺水航行耗时小时,沿江逆水航行耗时小时,根据用时相等列出等量关系式整理即可,注意a的取值范围必须大于20.【详解】解:(1)设江水的流速为vkm/h,根据题意得:解得:v=6.经检验,v=6是原方程的解.答:江水的流速为6km/h;(2)根据题意得:,整理可得:(a>20).【点睛】本题考查分式方程的应用,列函数关系式.分析题意,找到合适的等量关系是解决问题的关键.航行问题常用的等量关系为:逆水速度=静水速度-水流速度,顺水路程=静水速度+水流速度.4、 (1)300千米,1小时(2)(3)或【解析】【分析】(1)根据图象,即可求解;(2)根据图象,可得乙车在点追上甲车,再求出两车的速度,然后设甲车出发小时后,乙车追上甲车,可得,解出即可求解;(3)分两种情况讨论,即可求解.(1)解:由图象可得,,两城相距300千米,乙车比甲车早到(小时);(2)解:由图象可得,乙车在点追上甲车,甲车的速度为(千米/时),乙车的速度为(千米/时),设甲车出发小时后,乙车追上甲车,,解得,∴(千米),∴点;(3)解:根据题意得:当乙车没有追上甲车前,甲、乙两车相距40千米时,,解得: ;当乙车超过甲车后,甲、乙两车相距40千米时,,解得:;综上所述,当甲、乙两车相距40千米时,或.【点睛】本题主要考查了函数图象,从函数图象获取准确信息,并利用数形结合思想解答是解题的关键.5、(1) , ;(2);(3)不可能,理由见解析【解析】【分析】(1)理解题意分别求得白纸张数为2和5时的长度即可;(2)根据题意,找到等量关系,列出式子即可;(3)将代入,求解,判断是否为正整数,即可求解.【详解】解:(1)由题意可得,白纸张数为2时,长度为当白纸张数为5时,长度为故答案为:,;(2)当白纸张数为张时,长度故答案为不可能.理由:将代入,得,解得.因为为整数,所以总长度不可能为.【点睛】本题主要考查了函数关系式的知识,解答本题的关键在于熟读题意发现题目中纸张长度的变化规律,并求出正确的函数关系式.
相关试卷
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试复习练习题,共23页。试卷主要包含了函数中,自变量x的取值范围是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十章 函数综合与测试练习,共22页。试卷主要包含了函数y=的自变量x的取值范围是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十章 函数综合与测试课时作业,共23页。试卷主要包含了下图中表示y是x函数的图象是等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)