|试卷下载
搜索
    上传资料 赚现金
    2022年必考点解析冀教版八年级数学下册第二十一章一次函数专题测评试卷(含答案详解)
    立即下载
    加入资料篮
    2022年必考点解析冀教版八年级数学下册第二十一章一次函数专题测评试卷(含答案详解)01
    2022年必考点解析冀教版八年级数学下册第二十一章一次函数专题测评试卷(含答案详解)02
    2022年必考点解析冀教版八年级数学下册第二十一章一次函数专题测评试卷(含答案详解)03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后练习题

    展开
    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后练习题,共27页。试卷主要包含了已知,点A等内容,欢迎下载使用。

    八年级数学下册第二十一章一次函数专题测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为( )

    A. B.
    C. D.
    2、点和都在直线上,且,则与的关系是( )
    A. B. C. D.
    3、下列各点中,不在一次函数的图象上的是( )
    A. B.
    C. D.
    4、如图,甲乙两人沿同一直线同时出发去往B地,甲到达B地后立即以原速沿原路返回,乙到达B地后停止运动,已知运动过程中两人到B地的距离y(km)与出发时间t(h)的关系如图所示,下列说法错误的是(  )

    A.甲的速度是16km/h
    B.出发时乙在甲前方20km
    C.甲乙两人在出发后2小时第一次相遇
    D.甲到达B地时两人相距50km
    5、已知点和点是一次函数图象上的两点,若,则下列关于的值说法正确的是( )
    A.一定为正数 B.一定为负数 C.一定为0 D.以上都有可能
    6、已知、两点,在轴上存在点使得的值最小,则点的坐标为( )
    A. B. C. D.
    7、已知点,在一次函数的图像上,则m与n的大小关系是( )
    A. B. C. D.无法确定
    8、点A(﹣1,y1)和点B(﹣4,y2)都在直线y=﹣2x上,则y1与y2的大小关系为( )
    A.y1>y2 B.y1<y2 C.y1=y2 D.y1≥y2
    9、如图,一次函数y=f(x)的图像经过点(2,0),如果y>0,那么对应的x的取值范围是( )

    A.x<2 B.x>2 C.x<0 D.x>0
    10、如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是( )

    A. B.
    C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、用待定系数法确定一次函数表达式所需要的步骤是什么?
    ①设——设函数表达式y=___,
    ②代——将点的坐标代入y=kx+b中,列出关于___、___的方程
    ③求——解方程,求k、b
    ④写——把求出的k、b值代回到表达式中即可.
    2、已知一次函数(m为常数),若其图象经过第一、三、四象限,则m的取值范围为____.
    3、求kx+b>0(或<0)(k≠0)的解集
    从函数值看:y=kx+b的值大于(或小于)0时,_____的取值范围
    从函数图象看:直线y=kx+b在_____上方(或下方)的x取值范围
    4、一次函数 y=2x+3 的图象经过第____________象限,y随x的增大而______ ,与y轴交点坐标为_________.
    5、如图,在平面直角坐标系中,点在第一象限,若点A关于x轴的对称点B在直线上,则m的值为_________.

    三、解答题(5小题,每小题10分,共计50分)
    1、为了贯彻落实市委市政府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A,B两贫困村的计划.现决定从某地运送168箱小鸡到A,B两村养殖,若用大、小货车共18辆,则恰好能一次性运完这批小鸡,已知这两种大、小货车的载货能力分别为10箱/辆和8箱/辆,其运往A、B两村的运费如下表:
    目的地车型
    A村(元/辆)
    B村(元/辆)
    大货车
    80
    90
    小货车
    40
    60
    (1)试求这18辆车中大、小货车各多少辆?
    (2)现安排其中10辆货车前往A村,其余货车前往B村,设前往4村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数表达式,并直接写出自变量取值范围;
    (3)在(2)的条件下,若运往A村的小鸡不少于96箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
    2、甲、乙两车从M地出发,沿同一路线驶向N地,甲车先出发匀速驶向N地,30分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了40km/h,结果两车同时到达N地,甲乙两车距N地的路程y(km)与乙车行驶时间x(h)

    (1)a= ,甲的速度是 km/h.
    (2)求线段AD对应的函数表达式.
    (3)直接写出甲出发多长时间,甲乙两车相距10km.
    3、已知点,和直线,则点到直线的距离可用公式计算,例如:求点到直线的距离.
    解:因为直线,其中,.
    所以点到直线的距离:.
    根据以上材料,解答下列问题:
    (1)求点到直线的距离.
    (2)已知的圆心的坐标为,半径为,判断与直线的位置关系并说明理由.
    (3)已知互相平行的直线与之间的距离是,试求的值.
    4、如图1,一个正立方体铁块放置在圆柱形水槽内,水槽的底面圆的面积记为,正立方体的底面正方形的面积记为.现以一定的速度往水槽中注水,28秒时注满水槽.此时停止注水,并立刻将立方体铁块用细线竖直匀速上拉直至全部拉出水面.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图2所示.

    (1)正立方体的棱长为______cm,______;
    (2)当圆柱形水槽内水面高度为12cm时,求注水时间是几秒?
    (3)铁块完全拉出时,水面高度为______cm.
    5、如图1,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.

    (1)则点A的坐标为_______,点B的坐标为______;
    (2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:∠BPE=2∠OAB;
    (3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,∠APQ=2∠OAB.连接OQ.
    ①则图中(不添加其他辅助线)与∠EPA相等的角有______;(都写出来)
    ②试求线段OQ长的最小值.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    由题意求出C和D点坐标,求出直线CD的解析式,再与直线AB解析式联立方程组即可求出交点E的坐标.
    【详解】
    解:令直线中,得到,故,
    令直线中,得到,故,
    由勾股定理可知:,
    ∵,且,
    ∴,,
    过C点作CH⊥x轴于H点,过D点作DF⊥x轴于F,如下图所示:

    ∵为等边三角形,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    同理,∵为等边三角形,
    ∴,,
    ∴,
    ∴,
    ∴,
    设直线CD的解析式为:y=kx+b,代入和,
    得到:,解得,
    ∴CD的解析式为:,
    与直线联立方程组,
    解得,故E点坐标为,
    故选:C.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C、D的坐标,进而求解.
    2、A
    【解析】
    【分析】
    根据一次函数图象的增减性,结合横坐标的大小关系,即可得到答案.
    【详解】
    解:∵直线y=-x+m的图象y随着x的增大而减小,
    又∵x1≥x2,点A(x1,y1)和B(x2,y2)都在直线y=-x+m上,
    ∴y1≤y2,
    故选:A.
    【点睛】
    本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.
    3、B
    【解析】
    【分析】
    根据一次函数解析变形可得,进而判断即可.
    【详解】
    解:∵

    A. ,,则在一次函数的图象上 ,不符合题意;
    B. ,,则不在一次函数的图象上,符合题意;
    C. ,,则在一次函数的图象上 ,不符合题意;
    D. ,,,则在一次函数的图象上 ,不符合题意;
    故选B
    【点睛】
    本题考查了一次函数的性质,满足一次函数解析式的点都在一次函数图象上,掌握一次函数的性质是解题的关键.
    4、D
    【解析】
    【分析】
    由图可知甲10小时所走路程是160km,即得甲的速度是16km/h,可判定A;根据出发时甲距B地80千米,乙距B地60千米,可判断B;由图得乙的速度是6km/h,即可得甲2小时比乙多走20km,可判断C;甲5小时达到B地可求此时乙所走路程为30km,即得甲到达B地时两人相距30km,可判断D.
    【详解】
    解:由图可知:甲10小时所走路程是80×2=160(km),
    ∴甲的速度是16km/h,故A正确,不符合题意;
    ∵出发时甲距B地80千米,乙距B地60千米,
    ∴发时乙在甲前方20km,故B正确,不符合题意;
    由图可得乙的速度是60÷10=6(km/h),
    ∴出发2小时,乙所走路程是6×2=12(km),甲所走路程为16×2=32(km),
    即甲2小时比乙多走20km,
    ∴甲乙两人在出发后2小时第一次相遇,故C正确,不符合题意;
    ∵甲5小时达到B地,此时乙所走路程为5×6=30(km),
    ∴甲到达B地时两人相距60-30=30(km),故D不正确,符合题意;
    故选:D.
    【点睛】
    本题考查一次函数的应用,解题的关键是理解图象中特殊点的意义.
    5、A
    【解析】
    【分析】
    由 可得一次函数的性质为随的增大而增大,从而可得答案.
    【详解】
    解:点和点是一次函数图象上的两点,,
    随的增大而增大,
    即一定为正数,
    故选A
    【点睛】
    本题考查的是一次函数的增减性的应用,掌握“一次函数,随的增大而增大, 则”是解本题的关键.
    6、B
    【解析】
    【分析】
    解:作点A关于y轴的对称点C,得C(-1,-1),直线AC与y轴交点即为点P,此时的值最小,求出直线BC的函数解析式,令x=0时得y的值即为点P的坐标.
    【详解】
    解:作点A关于y轴的对称点C,得C(-1,-1),直线AC与y轴交点即为点P,此时的值最小,
    设直线BC的函数解析式为y=kx+b,将、C(-1,-1)代入,得
    ,解得,
    ∴直线BC的函数解析式为y=x+,
    当x=0时,得y=,
    ∴P(0,).
    故选:B.
    【点睛】
    此题考查了轴对称求最短路径,求一次函数解析式,一次函数图象与坐标轴交点坐标,正确掌握利用轴对称知识解决最短路径问题是解题的关键.
    7、A
    【解析】
    【分析】
    根据一次函数的性质,y随x增大而减小判断即可.
    【详解】
    解:知点,在一次函数的图像上,
    ∵-2<0,
    ∴y随x增大而减小,
    ∵,
    ∴,
    故选:A.
    【点睛】
    本题考查了一次函数的增减性,解题关键是明确一次函数y随x增大而减小的性质.
    8、B
    【解析】
    【分析】
    由直线y=-2x的解析式判断k=−2<0,y随x的增大而减小,再结合点的坐标特征解题即可.
    【详解】
    解:∵一次函数中一次项系数k=-2<0,
    ∴y随x的增大而减小,
    ∵-4<-1,
    ∴y1 故选B.
    【点睛】
    本题考查一次函数的增减性,是重要考点,难度较易,掌握相关知识是解题关键.
    9、A
    【解析】
    【分析】
    y>0即是图象在x轴上方,找出这部分图象上点对应的横坐标范围即可.
    【详解】
    解:∵一次函数y=f(x)的图象经过点(2,0),
    ∴如果y>0,则x<2,
    故选:A.
    【点睛】
    本题考查一次函数的图象,数形结合是解题的关键.
    10、A
    【解析】
    【分析】
    分三段来考虑点P沿A→D运动,的面积逐渐变大;点P沿D→C移动,的面积不变;点P沿C→B的路径移动,的面积逐渐减小,同时考虑各段的函数解析式,据此选择即可得.
    【详解】
    解:如图,过点B作BH⊥DA交DA的延长线于H,设BH=h,则当点P在线段AD上时,,h是定值,y是x的一次函数,

    点P沿A→D运动,的面积逐渐变大,且y是x的一次函数,
    点P沿D→C移动,的面积不变,
    点P沿C→B的路径移动,的面积逐渐减小,同法可知y是x的一次函数,
    故选:A.
    【点睛】
    本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律,理解题意,作出辅助线是解题关键.
    二、填空题
    1、 kx+b k b
    【解析】

    2、
    【解析】
    【分析】
    根据一次函数的性质列出关于m的不等式组求解.
    【详解】
    解:由一次函数的图象经过第一、三、四象限,
    ∴,
    解得,m>.
    故答案为:.
    【点睛】
    本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
    3、 x x轴
    【解析】

    4、 一,二,三 增大 (0,3)
    【解析】

    5、2
    【解析】
    【分析】
    根据关于x轴的对称点的坐标特点可得B(3,-m),然后再把B点坐标代入y=-x+1可得m的值.
    【详解】
    解:∵点A(3,m),
    ∴点A关于x轴的对称点B(3,-m),
    ∵B在直线y=-x+1上,
    ∴-m=-3+1=-2,
    ∴m=2,
    故答案为:2.
    【点睛】
    此题主要考查了关于x轴对称点的坐标,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能使解析式左右相等.
    三、解答题
    1、 (1)大货车用12辆,小货车用6辆
    (2)(4≤x≤12,且x为整数)
    (3)8辆大货车、2辆小货车前往A村;4辆大货车、4辆小货车前往B村.最少运费为1320元
    【解析】
    【分析】
    (1)设大货车用a辆,小货车用b辆,根据大、小两种货车共18辆,运输168箱小鸡,列方程组求解;
    (2)设前往A村的大货车为x辆,则前往B村的大货车为(12- x)辆,前往A村的小货车为(10- x)辆,前往B村的小货车为[6-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;
    (3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
    (1)
    设大货车用a辆,小货车用b辆,根据题意得:
    解得:.
    ∴大货车用12辆,小货车用6辆.
    (2)
    设前往A村的大货车为x辆,则前往B村的大货车为(12- x)辆,前往A村的小货车为(10- x)辆,前往B村的小货车为[6-(10-x)]辆,
    y=80x+90(12-x)+40(10-x)+60[6-(10-x)]=10x+1240.

    4≤x≤12,且x为整数.
    (4≤x≤12,且x为整数)
    (3)
    由题意得:10x+8(10-x)≥96,解得:x≥8,
    又∵4≤x≤12,
    ∴8≤x≤12且为整数,
    ∵y=10x+1240,k=10>0,y随x的增大而增大,
    ∴当x=8时,y最小,
    最小值为y=10×8+1240=1320(元).
    答:使总运费最少的调配方案是:8辆大货车、2辆小货车前往A村;4辆大货车、4辆小货车前往B村.最少运费为1320元.
    【点睛】
    本题考查了二元一次方程组的应用,一次函数的应用,一元一次不等式组的应用,理解题意列出方程组、关系式、不等式是解题的关键.
    2、 (1)3.5小时,76;
    (2)线段AD对应的函数表达式为.
    (3)甲出发或或或小时,甲乙两车相距10km.
    【解析】
    【分析】
    (1)根据乙车3小时到货站,在货站装货耗时半小时,得出小时,甲提前30分钟,可求甲车行驶的时间为:0.5+4.5=5小时,然后甲车速度=千米/时即可;
    (2)利用待定系数法AD解析式为:,把AD两点坐标代入解析式得b=38380=4.5k+b解方程即可;
    (3)分两种情况,甲出发,乙未出发76t=10,乙出发后,设乙车的速度为xkm/h,利用行程列方程3x+(x-40)×1=380解方程求出x=105km/h,再用待定系数法,列方程,CD段乙车速度为105-40=65km/h,求出CD的解析式为,列方程,结合甲先行30分根据有理数加法求出甲所用时间即可.
    (1)
    解:∵3小时到货站,在货站装货耗时半小时,
    ∴小时,
    甲车行驶的时间为:0.5+4.5=5小时,
    甲车速度=千米/时,
    故答案为:3.5小时,76;
    (2)
    点A表示的路程为:76×0.5=38,
    设AD解析式为:,把AD两点坐标代入解析式得:
    b=38380=4.5k+b,
    解得:b=38k=76,
    线段AD对应的函数表达式为.

    (3)
    甲出发乙未出发,
    ∴76t=10,
    ∴t=,
    乙出发后;
    设乙车的速度为vkm/h,
    3v+(v-40)×1=380
    解得v=105km/h,
    ∴点B(3,315)
    设OB解析式为y=αx,代入坐标得:,
    ∴OB解析式为
    ∴,
    化简为:或,
    解得或,
    ∵CD段乙车速度为105-40=65km/h,
    设CD的解析式为代入点D坐标得,

    解得:,
    ∴CD的解析式为,
    ∴,
    解得:,
    ∵甲提前出发30分钟,
    ,,,
    甲出发或或或小时,甲乙两车相距10km.
    【点睛】
    本题考查待定系数法求一次函数解析式,利用函数图像获取信息,绝对值方程,一元一次方程,二元一次方程组解法,分类讨论思想的应用使问题完整解决是解题关键.
    3、 (1)
    (2)相切,理由见解析
    (3)或
    【解析】
    【分析】
    (1)将点直接代入距离公式计算.
    (2)计算圆心到直线的距离,将距离与半径比较,判断圆与直线之间的关系,
    (3)在直线上任取一点,计算该点到的距离,可求得.
    (1)
    因为直线,其中,,
    所以点到直线的距离:,
    (2)
    因为直线,其中,,
    所以圆心到直线的距离::,
    圆心到直线的距离,
    与直线相切.
    (3)
    在直线上取一点,
    根据题意得,点到直线的距离是,
    因为直线,其中,,
    所以点到直线的距离:,
    即:,
    解得:或.
    【点睛】
    本题属于一次函数的综合题,主要考查了点到直线的距离公式应用,解题关键是能够理解题目中距离的计算公式,并能结合圆、另一条直线进行计算.根据各数量之间的关系,正确列出一元一次不等式.
    4、 (1)10,4
    (2)15.2秒
    (3)17.5
    【解析】
    【分析】
    (1)由 12秒和20秒水槽内水面的高度可求正立方体的棱长;设注水的速度为xcm3/s,圆柱的底面积为scm2,得到关于x、s的二元一次方程组,可得到水槽的底面面积,即可求解;
    (2)根据A(12、10)、B(28、20)求出线段AB的解析式,把y=12代入解析式,即可求解;
    (3)根据水槽内水面的高度下降得体积为正立方体的体积,求出水槽内水面的高度下降,即可得答案.
    (1)
    解:由图2得:

    ∵12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,
    ∴正立方体的棱长为10cm;
    由图2可知,圆柱体一半注满水需要28-12=16 (秒),故如果将正方体铁块取出,又经过16-12=4 (秒)恰好将水槽注满,正方体的体积是103=1000cm3,
    设注水的速度为xcm3/s,圆柱的底面积为scm2,根据题意得:

    解得:
    ∴水槽的底面面积为400cm2,
    ∵正立方体的棱长为10cm,
    ∴正立方体的底面正方形的面积=10×10=100 cm2,
    ∴S1:S2=400:100=4:1
    (2)
    设线段AB的解析式为y=kx+b(k≠0),将A(12、10)、B(28、20)代入得:,
    解得:
    ∴y=x+,
    当y=12时,x+b=12,
    解得:x=15.2,
    ∴注水时间是15.2秒;
    (3)
    ∵正立方体的铁块全部拉出水面,水槽内水面的高度下降,
    设正立方体的铁块全部拉出水面,水槽内水面的高度下降acm,根据题意得:400a=1000,a=2.5,所以铁块完全拉出时,水面高度为20-2.5=17.5cm.
    【点睛】
    本题考查了正立方体的体积、圆柱的体积、一次函数的应用,做题的关键是利用函数的图象获取正确信息是解题的关键.
    5、 (1)(-3,0);(0,4)
    (2)证明见解析
    (3)①∠QPO,∠BAQ;②线段OQ长的最小值为
    【解析】
    【分析】
    (1)根据题意令x=0,y=0求一次函数与坐标轴的交点;
    (2)由题意可知与∠EPA相等的角有∠QPO,∠BAQ.利用三角形内角和定理解决问题;
    (3)根据题意可知如图3中,连接BQ交x轴于T.证明△APE≌△QPB(SAS),推出∠AEP=∠QBP,再证明OA=OT,推出直线BT的解析式为为:,推出点Q在直线y=﹣x+4上运动,再根据垂线段最短,即可解决问题.
    (1)
    解:在y=x+4中,令y=0,得0=x+4,
    解得x=﹣3,
    ∴A(﹣3,0),
    在y=x+4中,令x=0,得y=4,
    ∴B(0,4);
    故答案为:(﹣3,0),(0,4).
    (2)
    证明:如图2中,设∠ABO=α,则∠OAB=90°﹣α,
    ∵PB=PE,
    ∴∠PBE=∠PEB=α,
    ∴∠BPE=180°﹣∠PBE﹣∠PEB=180°﹣2α=2(90°﹣α),
    ∴∠BPE=2∠OAB.
    (3)
    解:①结论:∠QPO,∠BAQ
    理由:如图3中,∵∠APQ=∠BPE=2∠OAB,
    ∵∠BPE=2∠OAB,
    ∴∠APQ=∠BPE.
    ∴∠APQ﹣∠APB=∠BPE﹣∠APB.
    ∴∠QPO=∠EPA.
    又∵PE=PB,AP=PQ
    ∴∠PEB=∠PBE=∠PAQ=∠AQP.
    ∴∠BAQ=180°﹣∠EAQ=180°﹣∠APQ=∠EPA.
    ∴与∠EPA相等的角有∠QPO,∠BAQ.
    故答案为:∠QPO,∠BAQ.
    ②如图3中,连接BQ交x轴于T.

    ∵AP=PQ,PE=PB,∠APQ=∠BPE,
    ∴∠APE=∠QPB,
    在△APE和△QPB中,,
    ∴△APE≌△QPB(SAS),
    ∴∠AEP=∠QBP,
    ∵∠AEP=∠EBP,
    ∴∠ABO=∠QBP,
    ∵∠ABO+∠BAO=90°,∠OBT+∠OTB=90°,
    ∴∠BAO=∠BTO,
    ∴BA=BT,
    ∵BO⊥AT,
    ∴OA=OT,
    ∴直线BT的解析式为为:,
    ∴点Q在直线y=﹣x+4上运动,
    ∵B(0,4),T(3,0).
    ∴BT=5.
    当OQ⊥BT时,OQ最小.
    ∵S△BOT=×3×4=×5×OQ.
    ∴OQ=.
    ∴线段OQ长的最小值为.
    【点睛】
    本题属于一次函数综合题,考查一次函数图象与坐标轴的交点问题、全等三角形的判定和性质、等腰三角形的性质、锐角三角函数及最短距离等知识,正确寻找全等三角形是解题的关键.

    相关试卷

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步训练题: 这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步训练题,共30页。试卷主要包含了下列不能表示是的函数的是等内容,欢迎下载使用。

    冀教版八年级下册第二十一章 一次函数综合与测试综合训练题: 这是一份冀教版八年级下册第二十一章 一次函数综合与测试综合训练题,共30页。试卷主要包含了下列函数中,一次函数是,已知一次函数y=,若一次函数的图像经过第一等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试测试题: 这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试测试题,共28页。试卷主要包含了,两地相距80km,甲,如图所示,直线分别与轴等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map