![难点解析冀教版八年级数学下册第二十一章一次函数专题测评练习题(精选含解析)第1页](http://m.enxinlong.com/img-preview/2/3/12764578/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版八年级数学下册第二十一章一次函数专题测评练习题(精选含解析)第2页](http://m.enxinlong.com/img-preview/2/3/12764578/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版八年级数学下册第二十一章一次函数专题测评练习题(精选含解析)第3页](http://m.enxinlong.com/img-preview/2/3/12764578/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版八年级下册第二十一章 一次函数综合与测试综合训练题
展开这是一份冀教版八年级下册第二十一章 一次函数综合与测试综合训练题,共25页。试卷主要包含了已知点等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为( )
A. B.
C. D.
2、直线和在同一直角坐标系中的图象可能是( )
A. B.
C. D.
3、如图所示,直线分别与轴、轴交于点、,以线段为边,在第二象限内作等腰直角,,则过、两点直线的解析式为( )
A. B. C. D.
4、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为( )
A. B. C. D.
5、如图,在Rt△ABO中,∠OBA=90°,A(4,4),且,点D为OB的中点,点P为边OA上的动点,使四边形PDBC周长最小的点P的坐标为( )
A.(2,2) B.(,) C.(,) D.(,)
6、已知点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,则y1,y2的大小关系是( )
A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定
7、如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是( )
A. B.
C. D.
8、某网店销售一款市场上畅销的护眼台灯,在销售过程中发现,这款护眼台灯销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.则y与x的函数关系式为( )
A.y=﹣2x+100 B.y=﹣2x+40 C.y=﹣2x+220 D.y=﹣2x+60
9、把函数y=x的图象向上平移2个单位,下列各点在平移后的函数图象上的是( )
A.(2,2) B.(2,3) C.(2,4) D.(2,5)
10、在同一平面直角坐标系中,函数的图象与函数的图象互相平行,则下列各点在函数的图象上的点是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线与相交于点,则关于x,y的二元一次方程组的解为______.
2、如图,在平面直角坐标系中,点在第一象限,若点A关于x轴的对称点B在直线上,则m的值为_________.
3、一般地,任何一个二元一次方程都可以转化为一次函数y=kx+b(k、b为常数,且k≠0)的形式,所以每个二元一次方程都对应一个_____,也对应一条直线.这条直线上每个点的坐标(x,y)都是这个二元一次方程的解.
由含有未知数x和y的两个二元次一方程组成的每个二元一次方程组,都对应两个一次函数,于是也对应两条直线.从数的角度看,解这样的方程组,相当于求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从形的角度看,解这样的方程组,相当于确定两条相应直线_____的坐标.因此,我们可以用画一次函数图象的方法得到方程组的解.
4、在运用一次函数解决实际问题时,首先判断问题中的两个变量之间是不是____关系,当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
5、已知一次函数的图象经过第一、二、四象限,写出一个满足条件的一次函数的表达式 ___.
三、解答题(5小题,每小题10分,共计50分)
1、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:
(1)甲、乙两地之间的距离为 km;
(2)两车经过 h相遇;
(3)求慢车和快车的速度;
(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.
2、一次函数y=kx+b,当-3≤x≤1时,对应的y的取值为1≤y≤9,求该函数的解析式.
3、如图,直线l1的函数解析式为y=﹣x+1,且l1与x轴交于点A,直线l2经过点B,D,直线l1,l2交于点C.
(1)求直线l2的函数解析式;
(2)求△ABC的面积.
4、如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)(3,4).
(1)若△A1B1C1与△ABC关于y轴成轴对称,请在网格中画出△A1B1C1,并写出△A1B1C1三顶点坐标:A1 ,B1 ,C1 ;
(2)计算△ABC的面积;
(3)若点P为x轴上一点,当PA+PB最小时,写出此时P点坐标 .
5、在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1),B(0,3).
(1)求这个一次函数的解析式;
(2)若这个一次函数的图象与x轴的交点为C,求△BOC的面积.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据一次函数的图象与系数的关系,由一次函数图象分析可得m、n的符号,进而可得mn的符号,从而判断的图象是否正确,进而比较可得答案.
【详解】
A、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;
B、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;
C、由一次函数图象可知,,即;正比例函数的图象可知,矛盾,故此选项错误;
D、由一次函数图象可知,,即,与正比例函数的图象可知,故此选项正确;
故选:D.
【点睛】
此题主要考查了一次函数图象,注意:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
2、D
【解析】
【分析】
根据两个解析式中一次项系数的符号相反、常数项的符号相反,结合一次函数的图象与性质即可解决.
【详解】
根据直线和的解析式知,k与-2k符号相反,b与-b符号相反(由图知b≠0);
A选项中的直线与y轴的交点均在y轴正半轴上,故不合题意;
B、C两选项中两直线从左往右均是上升的,则k与-2k全为正,也不合题意;
D选项中两直线满足题意;
故选:D
【点睛】
本题考查了一次函数的图象与性质,掌握一次函数的图象与性质,数形结合是关键本题的关键.
3、B
【解析】
【分析】
过作轴,可证得,从而得到,,可得到再由,,即可求解.
【详解】
解:过作轴,则,
对于直线,令,得到,即,,
令,得到,即,,
,
为等腰直角三角形,即,,
,
,
在和中,
,
,
,,即,
,
设直线的解析式为,
,
,
解得 .
过、两点的直线对应的函数表达式是.
故选:B
【点睛】
本题主要考查了求一次函数解析式,一次函数的图象和性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握相关知识点,并利用数形结合思想解答是解题的关键.
4、C
【解析】
【分析】
求出点A、点坐标,求出长即可求出点的坐标.
【详解】
解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);
即,,;
以点为圆心、长为半径画弧,与轴正半轴交于点,
故,则,
点C的坐标为;
故选:C
【点睛】
本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.
5、C
【解析】
【分析】
先确定点D关于直线AO的对称点E(0,2),确定直线CE的解析式,直线AO的解析式,两个解析式的交点就是所求.
【详解】
∵∠OBA=90°,A(4,4),且,点D为OB的中点,
∴点D(2,0),AC=1,BC=3,点C(4,3),
设直线AO的解析式为y=kx,
∴4=4k,
解得k=1,
∴直线AO的解析式为y=x,
过点D作DE⊥AO,交y轴于点E,交AO于点F,
∵∠OBA=90°,A(4,4),
∴∠AOE=∠AOB=45°,
∴∠OED=∠ODE=45°,OE=OD,
∴DF=FE,
∴点E是点D关于直线AO的对称点,
∴点E(0,2),
连接CE,交AO于点P,此时,点P是四边形PCBD周长最小的位置,
设CE的解析式为y=mx+n,
∴,
解得,
∴直线CE的解析式为y=x+2,
∴,
解得,
∴使四边形PDBC周长最小的点P的坐标为(,),
故选C.
【点睛】
本题考查了一次函数的解析式,将军饮马河原理,熟练掌握待定系数法和将军饮马河原理是解题的关键.
6、A
【解析】
【分析】
根据一次函数y=3x+a的一次项系数k>0时,函数值随自变量的增大而增大的性质来求解即可.
【详解】
解:∵一次函数y=3x+a的一次项系数为3>0,
∴y随x的增大而增大,
∵点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,﹣1<4,
∴y1<y2,
故选:A.
【点睛】
本题考查了一次函数的性质,掌握,时,随的增大而增大是解题的关键.
7、A
【解析】
【分析】
分三段来考虑点P沿A→D运动,的面积逐渐变大;点P沿D→C移动,的面积不变;点P沿C→B的路径移动,的面积逐渐减小,同时考虑各段的函数解析式,据此选择即可得.
【详解】
解:如图,过点B作BH⊥DA交DA的延长线于H,设BH=h,则当点P在线段AD上时,,h是定值,y是x的一次函数,
点P沿A→D运动,的面积逐渐变大,且y是x的一次函数,
点P沿D→C移动,的面积不变,
点P沿C→B的路径移动,的面积逐渐减小,同法可知y是x的一次函数,
故选:A.
【点睛】
本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律,理解题意,作出辅助线是解题关键.
8、C
【解析】
【分析】
根据单价为60元时,每星期卖出100个,每涨价1元,每星期少卖出2个,列出关系式即可.
【详解】
解:∵单价为60元时,每星期卖出100个.销售单价,每涨价1元,少卖出2个,
∴设销售单价为x元,则涨价(x-60)元,每星期少卖出2(x-60)个.,
∴y=100−2(x-60)=-2x+220,
故选C.
【点睛】
此题主要考查了由实际问题列函数关系式,关键是正确理解题意,找出题目中的等量关系.
9、C
【解析】
【分析】
由函数“上加下减”的原则解题.
【详解】
解:由“上加下减”的原则可知,将直线y=x的图象向上平移2个单位所得直线的解析式为:y=x+2,
当x=2时,y=2+2=4,
所以在平移后的函数图象上的是(2,4),
故选:C.
【点睛】
本题考查函数图象的平移,一次函数图象的性质等知识,是基础考点,掌握相关知识是解题关键.
10、C
【解析】
【分析】
根据题意两个函数图象互相平行可得,即可确定函数解析式,然后将选项各点代入检验即可确定哪个点在直线上.
【详解】
解:函数的图象与函数的图象互相平行,
∴,
∴,
当时,,选项A不在直线上;
当时,,选项B不在直线上;
当时,,选项C在直线上;
当时,,选项D不在直线上;
故选:C.
【点睛】
题目主要考查确定一次函数的解析式及确定点是否在直线上,熟练掌握确定一次函数解析式的方法是解题关键.
二、填空题
1、
【解析】
【分析】
根据两条直线相交与二元一次方程组的关系即可求得二元一次方程组的解.
【详解】
∵直线与相交于点
∴的坐标既满足,也满足
∴是方程组的解
故答案为:
【点睛】
本题考查了两条直线相交与二元一次方程组的关系,理解这个关系是关键.
2、2
【解析】
【分析】
根据关于x轴的对称点的坐标特点可得B(3,-m),然后再把B点坐标代入y=-x+1可得m的值.
【详解】
解:∵点A(3,m),
∴点A关于x轴的对称点B(3,-m),
∵B在直线y=-x+1上,
∴-m=-3+1=-2,
∴m=2,
故答案为:2.
【点睛】
此题主要考查了关于x轴对称点的坐标,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能使解析式左右相等.
3、 一次函数 交点
【解析】
略
4、一次函数
【解析】
略
5、(答案不唯一)
【解析】
【分析】
根据一次函数的图象与性质即可得.
【详解】
解:设这个一次函数表达式为,
∵一次函数图象经过第一、二、四象限,
∴,,
∴取,,
可得,
故答案为:(答案不唯一).
【点睛】
本题考查了一次函数的图象与性质,根据一次函数的图象与性质判断出,是解题关键.
三、解答题
1、 (1)900
(2)4
(3)快车的速度为150km/h,慢车的速度为75km/h
(4)y=225x﹣900,自变量x的取值范围是4≤x≤6
【解析】
【分析】
(1)由函数图象可以直接求出甲乙两地之间的距离;
(2)由函数图象的数据就即可得出;
(3)由函数图象的数据,根据速度=路程÷时间就可以得出慢车的速度,由相遇问题求出速度和就可以求出快车的速度进而得出结论;
(4)由快车的速度求出快车走完全程的时间就可以求出点C的横坐标,由两车的距离=速度和×时间就可以求出C点的纵坐标,由待定系数法就可以求出结论.
(1)
根据图象,得
甲、乙两地之间的距为900km.
故答案为:900;
(2)
由函数图象,当慢车行驶4h时,慢车和快车相遇.
故答案为:4;
(3)
由题意,得
快车与慢车的速度和为:900÷4=225(km/h),
慢车的速度为:900÷12=75(km/h),
快车的速度为:225﹣75=150 (km/h).
答:快车的速度为150km/h,慢车的速度为75km/h;
(4)
由题意,得快车走完全程的时间按为:900÷150=6(h),
6h时两车之间的距离为:225×(6﹣4)=450km.
则C(6,450).
设线段BC的解析式为y=kx+b,由题意,得
,
解得:,
则y=225x﹣900,自变量x的取值范围是4≤x≤6.
【点睛】
本题考查了一次函数的应用,根据函数图像获取信息是解题的关键.
2、函数的解析式为y=2x+7或y=-2x+3
【解析】
【分析】
分类讨论:由于一次函数是递增或递减函数,所以当一次函数y=kx+b为增函数时,则x=-3,y=1;x=1,y=9,当一次函数y=kx+b为减函数时,则x=-3,y=9;x=1,y=1,然后把它们分别代入y=kx+b中得到方程组,再解两个方程组即可.
【详解】
解:当x=-3,y=1;x=1,y=9,
∴,
解方程组得;
当x=-3,y=9;x=1,y=1,
∴,
解方程组得,
∴函数的解析式为y=2x+7或y=-2x+3.
【点睛】
本题考查了待定系数法求一次函数解析式:先设一次函数的解析式为y=kx+b,然后把一次函数图象上两点的坐标代入得到关于k、b的方程组,解方程组求出k、b的值,从而确定一次函数的解析式.也考查了分类讨论思想的运用.
3、 (1)y=x﹣3
(2)
【解析】
【分析】
(1)设直线l2的解析式为,将点B、点D两个点代入求解即可确定函数解析式;
(2)当y=0时,代入直线解析式确定点A的坐标,即可得出的底边长,然后联立两个函数解析式得出交点坐标,点C的纵坐标即为三角形的高,利用三角形面积公式求解即可得.
(1)
解:设直线l2的解析式为,
由直线l2经过点,可得:
,
解得:,
∴直线l2的解析式为;
(2)
当y=0时,代入直线解析式可得:
,
解得,
∴,
∴,
联立,
解得:,
∴,
∴.
【点睛】
题目主要考查利用待定系数法确定一次函数解析式,一次函数交点问题,理解题意,熟练掌握运用一次函数的性质是解题关键.
4、 (1)
(2)3.5
(3)
【解析】
【分析】
(1)依据轴对称的性质进行作图,即可得到△A1B1C1,进而得出△A1B1C1三顶点坐标;
(2)依据割补法进行计算,即可得到△ABC的面积;
(3)作点A关于x轴的对称点,连接B,交x轴于点P,依据一次函数的图象可得点P的坐标.
(1)
如图,△A1B1C1即为所求;
其中A1,B1,C1的坐标分别为:
故答案为:
(2)
△ABC的面积为:3×3-×3×1-×1×2-×2×3=3.5.
(3)
如图,作点A关于x轴的对称点,连接B,则B与x轴的交点即是点P的位置.
设B的解析式为y=kx+b(k≠0),
把和B(4,2)代入可得:
,解得,
∴y=x-2,
令y=0,则x=2,
∴P点坐标为,
故答案为:.
【点睛】
本题考查了作图-轴对称变换、轴对称-最短路线问题,解决本题的关键是掌握轴对称的性质.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.
5、 (1)y=2x+3
(2)S△BOC=
【解析】
【分析】
(1)根据点A、B的坐标利用待定系数法即可求出一次函数的解析式;
(2)利用直线解析式求得C的坐标,然后根据三角形面积公式即可求得△BOC的面积.
(1)
解:∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1),B(0,3).
∴,解得:,
∴这个一次函数的解析式为:y=2x+3.
(2)
解:令y=0,则2x+3=0,解得x=﹣,
∴C(﹣,0),
∵B(0,3).
∴S△BOC==.
【点睛】
本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,三角形的面积,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.
相关试卷
这是一份数学第二十一章 一次函数综合与测试测试题,共27页。试卷主要包含了一次函数y=mx﹣n,若点等内容,欢迎下载使用。
这是一份数学冀教版第二十一章 一次函数综合与测试精练,共26页。试卷主要包含了点A等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试课堂检测,共34页。试卷主要包含了直线不经过点,若点,一次函数y=mx﹣n,点A等内容,欢迎下载使用。