![精品试题冀教版八年级数学下册第二十一章一次函数专项测试练习题(含详解)第1页](http://m.enxinlong.com/img-preview/2/3/12764543/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版八年级数学下册第二十一章一次函数专项测试练习题(含详解)第2页](http://m.enxinlong.com/img-preview/2/3/12764543/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版八年级数学下册第二十一章一次函数专项测试练习题(含详解)第3页](http://m.enxinlong.com/img-preview/2/3/12764543/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版八年级下册第二十一章 一次函数综合与测试当堂检测题
展开这是一份冀教版八年级下册第二十一章 一次函数综合与测试当堂检测题,共29页。试卷主要包含了若直线y=kx+b经过一,一次函数的图象一定经过,如图,已知点K为直线l等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息、已知甲先出发3分钟,在整个步行过程中,甲、乙两人之间的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①乙用6分钟追上甲;②乙步行的速度为60米/分;③乙到达终点时,甲离终点还有400米;④整个过程中,甲乙两人相聚180米有2个时刻,分别是t=18和t=24.其中正确的结论有( )
A.①② B.①③ C.②④ D.①②④
2、一次函数的图象不经过的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3、下列不能表示是的函数的是( )
A.
0 | 5 | 10 | 15 | |
3 | 3.5 | 4 | 4.5 |
B.
C.
D.
4、点和点都在直线上,则与的大小关系为( )
A. B. C. D.
5、如图,李爷爷要围一个长方形菜园ABCD,菜园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为24m,设边BC的长为xm,边AB的长为ym(x>y).则y与x之间的函数表达式为( )
A.y=﹣2x+24(0<x<12) B.y=﹣x+12(8<x<24)
C.y=2x﹣24(0<x<12) D.y=x﹣12(8<x<24)
6、若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的( )
A. B. C. D.
7、一次函数的图象一定经过( )
A.第一、二、三象限 B.第一、三、四象限
C.第二、三、四象限 D.第一、二、四象限
8、平面直角坐标系中,点的坐标为,一次函数的图像与轴、轴分别相交于点、,若点在的内部,则的取值范围为( )
A.或 B. C. D.
9、如图,已知点K为直线l:y=2x+4上一点,先将点K向下平移2个单位,再向左平移a个单位至点K1,然后再将点K1向上平移b个单位,向右平1个单位至点K2,若点K2也恰好落在直线l上,则a,b应满足的关系是( )
A.a+2b=4 B.2a﹣b=4 C.2a+b=4 D.a+b=4
10、某种摩托车的油箱最多可以储油10升,李师傅记录了他的摩托车加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)的关系,则当0≤x≤500时,y与x的函数关系是( ).
x(千米) | 0 | 100 | 150 | 300 | 450 | 500 |
y(升) | 10 | 8 | 7 | 4 | 1 | 0 |
A.正比例函数关系 B.一次函数关系
C.二次函数关系 D.反比例函数关系
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、将直线向下平移4个单位后,所得直线的表达式是______.
2、如图,在平面直角坐标系xOy中,直线l1,l2分别是关于x,y的二元一次方程a1x+b1y=c1,a2x+b2y=c2的图象,则二元一次方程组的解为___.
3、如图,已知函数和的图象交于点,则根据图象可得,二元一次方程组的解是_______.
4、如图,直线l是一次函数y=kx+b的图象,填空:
(1)b=______,k=______;
(2)当x=30时,y=______;
(3)当y=30时,x=______.
5、若正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,请写出一个满足上述要求的k的值______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系中,点为坐标原点,直线分别交轴、轴于点、,经过点的直线交轴于点.
(1)求点的坐标;
(2)动点在射线上运动,过点作轴,垂足为点,交直线于点,设点的横坐标为.线段的长为.求关于的函数解析式,并直接写出自变量的取值范围;
(3)在(2)的条件下,当点在线段上时,连接,若,在线段上取一点.连接,使,问在轴上是否存在点,使是以为直角的直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.
2、如图,在平面直角坐标系中,三个顶点的坐标分别为,,,将进行平移,使点移动到点,得到△,其中点、、分别为点、、的对应点
(1)请在所给坐标系中画出△,并直接写出点的坐标;
(2)求的面积;
(3)直线过点且平行于轴,在直线上求一点使与的面积相等,请写出点的坐标.
3、已知一次函数图象与直线平行且过点.
(1)求一次函数解析式;
(2)若(1)中一次函数图象,分别与、轴交于、两点,求、两点坐标;
(3)若点在轴上,且,求点坐标.
4、A、B两地相距20千米,甲、乙两人某日中午12点同时从A地出发匀速前往B地,甲的速度是每小时4千米,如图,线段OM反映了乙所行的路程s与所用时间t之间的函数关系,根据提供的信息回答下列问题:
(1)乙由A地前往B地所行的路程s与所用时间t之间的函数解析式是 ,定义域是 ;
(2)在图中画出反映甲所行驶的路程s与所用时间t之间的函数图象;
(3)下午3点时,甲乙两人相距 千米.
5、平面直角坐标系内有一平行四边形点,,,,有一次函数的图象过点
(1)若此一次函数图象经过平行四边形边的中点,求的值
(2)若此一次函数图象与平行四边形始终有两个交点,求出的取值范围
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:由题意可得:甲步行的速度为(米分);
由图可得,甲出发9分钟时,乙追上甲,故乙用6分钟追上甲,
故①结论正确;
∴乙步行的速度为米/分,
故②结论正确;
乙走完全程的时间(分),
乙到达终点时,甲离终点距离是:(米),
故③结论错误;
设9分到23分钟这个时刻的函数关系式为,则把点代入得:
,解得:,
∴,
设23分钟到30分钟这个时间的函数解析式为,把点代入得:
,解得:,
∴,
把分别代入可得:或,
故④错误;
故正确的结论有①②.
故选:A.
【点睛】
本题主要考查一次函数的应用,解题的关键是从图象中找准等量关系.
2、C
【解析】
【分析】
根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数的图象经过第一、二、四象限,此题得解.
【详解】
解:∵k=-2<0,b=1>0,
∴一次函数y=-2x+1的图象经过第一、二、四象限,
∴一次函数y=-2x+1的图象不经过第三象限.
故选:C.
【点睛】
本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.
3、B
【解析】
【分析】
根据函数的定义(如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就把x称为自变量,把y称为因变量,y是x的函数)及利用待定系数法确定一次函数解析式依次进行判断即可得.
【详解】
解:A、根据图表进行分析为一次函数,设函数解析式为:,
将,,,
分别代入解析式为:
,
解得:,,
所以函数解析式为:,
∴y是x的函数;
B、从图象上看,一个x值,对应两个y值,不符合函数定义,y不是x的函数;
C、D选项从图象及解析式看可得y是x的函数.
故选:B.
【点睛】
题目主要考查函数的定义及利用待定系数法确定一次函数解析式,深刻理解函数定义是解题关键.
4、B
【解析】
【分析】
根据 ,可得 随 的增大而减小,即可求解.
【详解】
解:∵ ,
∴ 随 的增大而减小,
∵ ,
∴ .
故选:B
【点睛】
本题主要考查了一次函数的性质,熟练掌握对于一次函数 ,当 时, 随 的增大而增大,当 时, 随 的增大而减小是解题的关键.
5、B
【解析】
【分析】
根据菜园的三边的和为24m,进而得出一个x与y的关系式,然后根据题意可得关于x的不等式,求解即可确定x的取值范围.
【详解】
解:根据题意得,菜园三边长度的和为24m,
即,
所以,
由y>0得,,
解得,
当时,即,
解得,
∴,
故选:B.
【点睛】
题目主要考查一次函数的运用及根据条件得出不等式求解,理解题意,利用不等式得出自变量的取值范围是解题关键.
6、B
【解析】
【分析】
根据直线y=kx+b经过一、二、四象限,可得k<0,b>0,从而得到直线y=bx﹣k过一、二、三象限,即可求解.
【详解】
解:∵直线y=kx+b经过一、二、四象限,
∴k<0,b>0,
∴﹣k>0,
∴直线y=bx﹣k过一、二、三象限,
∴选项B中图象符合题意.
故选:B
【点睛】
本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
7、C
【解析】
【分析】
k<0,函数一定经过第二,四象限,b<0,直线与y轴交于负半轴,所以函数图象过第三象限.
【详解】
解:∵k=-2<0,b=-3<0,
∴函数的图象经过第二、三、四象限,
故选:C.
【点睛】
本题考查了一次函数的性质,k>0,函数一定经过第一,三象限,k<0,函数一定经过第二,四象限,再根据直线与y轴的交点即可得出函数所过的象限,这是解题的关键.
8、C
【解析】
【分析】
由求出A,B的坐标,根据点的坐标得到点在直线上,求出直线与y轴交点C的坐标,解方程组求出交点E的坐标,即可得到关于m的不等式组,解之求出答案.
【详解】
解:当中y=0时,得x=-9;x=0时,得y=12,
∴A(-9,0),B(0,12),
∵点的坐标为,
当m=1时,P(3,0);当m=2时,P(6,-4),
设点P所在的直线解析式为y=kx+b,将(3,0),(6,-4)代入,
∴,
∴点在直线上,
当x=0时,y=4,∴C(0,4),
,解得,∴E(-3,8),
∵点在的内部,
∴,
∴-1<m<0,
故选:C.
.
【点睛】
此题考查了一次函数与坐标轴的交点,两个一次函数图象的交点,解一元一次不等式组,确定点在直线上是解题的关键.
9、C
【解析】
【分析】
点K为直线l:y=2x+4上一点,设再根据平移依次写出的坐标,再把的坐标代入一次函数的解析式,整理即可得到答案.
【详解】
解: 点K为直线l:y=2x+4上一点,设
将点K向下平移2个单位,再向左平移a个单位至点K1,
将点K1向上平移b个单位,向右平1个单位至点K2,
点K2也恰好落在直线l上,
整理得:
故选C
【点睛】
本题考查的是一次函数图象上点的坐标满足函数解析式,点的平移,掌握“点的平移坐标的变化规律”是解本题的关键.
10、B
【解析】
【分析】
根据表格数据,描点、连线画出函数的图象,根据函数图象进行判断即可
【详解】
根据表格数据,描点、连线画出函数的图象如图:
故y与x的函数关系是一次函数.
故选B.
【点睛】
本题考查了画一次函数图象,掌握一次函数图象的性质是解题的关键.
二、填空题
1、
【解析】
【分析】
根据直线向下平移4个单位,可得平移后的直线的表达式为,即可求解.
【详解】
解:将直线向下平移4个单位后,所得直线的表达式是.
故答案为:
【点睛】
本题主要考查了一次函数图象的平移,熟练掌握一次函数图象向上平移 个单位后得到;向下平移 个单位后得到是解题的关键.
2、
【解析】
【分析】
本题可以通过直线与方程的关系得到方程组的解.
【详解】
解:因为直线l1,l2分别是关于x,y的二元一次方程a1x+b1y=c1,a2x+b2y=c2的图象,其交点为(-2,1),
所以二元一次方程组的解为,
故答案为:.
【点睛】
本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.
3、
【解析】
【分析】
根据两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组求解.
【详解】
解:由图像可知二元一次方程组的解是,
故答案为:
【点睛】
本题考查了一次函数与二元一次方程(组):两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组.
4、 2 18 -42
【解析】
略
5、2(满足k>0即可)
【解析】
【分析】
根据函数图象经过第一、三象限,可判断k>0,任取一个正值即可.
【详解】
解:∵正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,
∴k>0.
故答案为:2(满足k>0即可).
【点睛】
本题考查了正比例函数的性质,解题关键是明确正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限时,k>0.
三、解答题
1、 (1)
(2)
(3)存在,,
【解析】
【分析】
(1)先由直线分别交轴、轴于点、,求出点、的坐标,再根据直线经过点,求出的值,得到直线的解析式,令,得到关于的一元一次方程,求出的值即为点的横坐标;
(2)由轴于点,交直线于点,且点的横坐标为,得,,再按点在轴的左侧及点在轴的右侧分别求出关于的函数解析式及相应的的取值范围即可;
(3)连接,设交轴于点,作轴于点,先证明,根据勾股定理及面积等式求出点的坐标,再证明,求出直线的解析式,令,得到关于的一元一次方程,解方程求出的值即为点的横坐标.
(1)
直线,当时,;
当时,则,
解得,
,,
直线经过点,
,
直线的解析式为,
当时,则,
解得,
(2)
轴于点,交直线于点,且点的横坐标为,
,,
如图1,点在轴的左侧,则,
,
;
如图2,点在轴的右侧,则,
,
,
综上所述,关于的函数解析式为.
(3)
存在,
如图3,连接,交轴于点,,作轴于点,
点在线段上,且,
,
整理得或(不符合题意,舍去),
,,
点为的中点,
,
,
,
,
,
,
,
,,,
,
,
,
,
,
解得,
,
设直线的解析式为,则,
解得,
直线的解析式为,
由得,
,
设直线的解析式为,则,
解得,
直线的解析式为,
,
,
设直线的解析式为,则,
解得,
直线的解析式为,
当时,则,
解得,
点的坐标为,.
【点睛】
此题重点考查一次函数的图象与性质、用待定系数法求函数解析式、用解方程组的方法求函数图象的交点坐标、直角三角形斜边上的中线等于斜边的一半、勾股定理等知识与方法,综合运用以上知识是解题的关键.
2、 (1)见解析,
(2)7
(3),
【解析】
【分析】
(1)根据将进行平移,使点移动到A,得出平移方式为向右移动5个单位向上移动1个单位,据此平移得到,顺次连接,则△即为所求;
(2)根据网格的特点用长方形减去三个三角形的面积即可;
(3)根据题意可知点在过点且平行于的直线上,先求得直线解析式为,根据平行,设直线解析式为,将点代入,求得,联立与即可求得点的坐标.
(1)
如图所示,△即为所求,
由图知,点的坐标为;
故答案为:;
(2)
的面积为,
故答案为:7;
(3)
如图,过点作的平行线,与直线的交点即为所求点,
由、,设直线解析式为
则
解得
即直线的解析式为,
设直线解析式为,
将点代入,得:,
解得,
直线的解析式为,
当时,,
解得,
点的坐标为,,
故答案为:,.
【点睛】
本题考查了坐标与图形,平移作图,求一次函数解析式,一次函数的平移,两直线交点问题,掌握平移的性质是解题的关键.
3、 (1)
(2),
(3)或
【解析】
【分析】
(1)由一次函数图象平移的性质得到k=2,再将点代入求出解析式;
(2)分别求出y=0及x=0时的对应值,即可得到A、两点坐标;
(3)由结合三角形的面积公式得到AP=2AO,即可得到点P坐标.
(1)
解:设一次函数的解析式为,
一次函数图象与直线平行,
,
过点,
∴,
,
一次函数解析式为;
(2)
解:把代入得,,
,
,
把x=0代入得,,
;
(3)
解:∵,,
AP=2AO=2,
-1-2=-3,-1+2=1,
或.
【点睛】
此题考查了一次函数平移的性质,一次函数图象与坐标轴的交点坐标,一次函数与图形面积问题,正确掌握一次函数的综合知识是解题的关键.
4、 (1)s=t;0≤t≤6
(2)见解析
(3)2
【解析】
【分析】
(1)设直线的解析式为,将代入即可求出,由图象可直接得出的范围;
(2)根据甲的速度,可得出行驶时间,得到终点时点的坐标,作出直线即可;
(3)用甲行驶的路程减去乙行驶的路程即可.
(1)
解:设直线的解析式为,且,
,解得;
;
由图象可知,;
故答案为:;;
(2)
解:甲的速度是每小时4千米,
甲所用的时间(小时),
,
图象如下图所示:
(3)
解:下午3点时,甲、乙两人之间的距离为:.
故答案为:2.
【点睛】
本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
5、 (1)k=;
(2)−1<k<,且k≠0.
【解析】
【分析】
(1)设OA的中点为M,根据M、P两点的坐标,运用待定系数法求得k的值;
(2)当一次函数y=kx+b的图象过B、P两点时,求得k的值;当一次函数y=kx+b的图象过A、P两点时,求得k的值,最后判断k的取值范围.
(1)
解:设OA的中点为M,
∵O(0,0),A(4,0),
∴OA=4,
∴OM=2,
∴M(2,0),
∵一次函数y=kx+b的图象过M(2,0),P(6,1)两点,
∴,
解得:k=;
(2)
如图,由一次函数y=kx+b的图象过定点P,作直线BP,AP与平行四边形只有一个交点,由于直线与平行四边形有两个交点,所以直线应在直线BP,AP之间,
当一次函数y=kx+b的图象过B、P两点时,
代入表达式y=kx+b得到:,
解得:k=-1,
当一次函数y=kx+b的图象过A、P两点时,
代入表达式y=kx+b得到:,
解得:k=,
所以−1<k<,
由于要满足一次函数的存在性,
所以−1<k<,且k≠0.
【点睛】
本题考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.
相关试卷
这是一份初中冀教版第二十一章 一次函数综合与测试练习题,共25页。试卷主要包含了点A,已知点,都在直线上,则等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共32页。试卷主要包含了一次函数的大致图象是等内容,欢迎下载使用。
这是一份数学第二十一章 一次函数综合与测试测试题,共28页。试卷主要包含了已知是一次函数,则m的值是,若直线y=kx+b经过一等内容,欢迎下载使用。