2022届高三数学二轮复习课件:专题一 第1讲 函数的图象与性质
展开
这是一份2022届高三数学二轮复习课件:专题一 第1讲 函数的图象与性质,共60页。PPT课件主要包含了内容索引,必备知识•精要梳理,关键能力•学案突破,对点练1,答案A,答案ACD,答案B,对点练2,答案1,对点练3等内容,欢迎下载使用。
1.函数的概念(1)求函数定义域的方法是依据含自变量x的代数式有意义列出相应的不等式(组)求解.温馨提示函数的定义域必须写成集合或区间的形式.(2)求函数的值域要优先考虑定义域,常用方法:配方法、分离常数法(分式函数)、换元法、单调性法、基本不等式法、数形结合法.
这是函数具有奇偶性的重要前提
2.函数的性质(1)奇偶性:①定义:若函数的定义域关于原点对称,则有:f(x)是偶函数⇔f(-x)=f(x)=f(|x|);f(x)是奇函数⇔f(-x)=-f(x).②判断方法:定义法、图象法、奇偶函数性质法(如奇函数×奇函数是偶函数).(2)单调性的判断方法:定义法、图象法、导数法.
(3)周期性的常用结论:若f(x+a)=-f(x)或f(x+a)=± (a≠0),则T=2a;若f(x+a)=f(x-b),则T=a+b;若f(x)的图象有两条对称轴x=a和x=b(a≠b),则T=2|b-a|;若f(x)的图象有两个对称中心(a,0)和(b,0)(a≠b),则T=2|b-a|(可类比正、余弦函数).特别提醒若f(x)是奇函数且在原点有定义,则f(0)=0;若函数f(x)是周期为T的奇函数,则必有f =0.
等式中自变量x的系数同号
3.函数的图象(1)函数图象的判断方法:①找特殊点;②看性质:根据函数性质判断图象的位置、对称性、变化趋势等;③看变换:看函数是由基本初等函数经过怎样的变换得到的.(2)若y=f(x)的图象关于直线x=a对称,则有f(a+x)=f(a-x)或f(2a-x)=f(x)或f(x+2a)=f(-x);若y=f(x)对∀x∈R都有f(a-x)=f(b+x),则f(x)的图象关于直
等式中自变量x的系数异号
(3)函数y=f(x)与y=f(-x)的图象关于y轴对称,函数y=f(a-x)与y=f(b+x)的图象关于直线x= 对称;y=f(x)与y=-f(x)的图象关于x轴对称;y=f(x)与y=-f(-x)的图象关于原点对称.(4)利用图象可解决函数的最值、方程与不等式的解以及求参数的取值范围等问题.
A.[0,1]B.(0,1)C.[0,1)D.(0,1]
答案 B 解析 由题意,函数f(x)的定义域为[-1,1],即-1≤x≤1,令-1≤2x-1≤1,解得0≤x≤1,又由g(x)满足1-x>0且1-x≠1,解得x
相关课件
这是一份专题一 第1讲 函数的图象与性质--高三高考数学复习-PPT,共60页。PPT课件主要包含了考点一,考点二,考点三,函数的概念与表示,函数的图象,函数的性质,专题强化练,核心提炼,单项选择题,B不满足①等内容,欢迎下载使用。
这是一份专题一 第1讲 函数的图象与性质 2024年高考数学大二轮复习课件(含讲义),文件包含专题一第1讲函数的图象与性质pptx、专题一第1讲函数的图象与性质教师版docx、专题一第1讲函数的图象与性质docx等3份课件配套教学资源,其中PPT共60页, 欢迎下载使用。
这是一份2023届高考数学二轮复习专题6第1讲函数的图象与性质课件,共59页。PPT课件主要包含了专题六函数与导数,考情分析,真题热身,ln2,感悟高考,典例1,考点二函数的性质,典例2,典例3,考点三函数的图象等内容,欢迎下载使用。