初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀随堂练习题
展开
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀随堂练习题,共29页。
八年级数学下册第二十二章四边形综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若菱形的周长为8,高为2,则菱形的面积为( )A.2 B.4 C.8 D.162、如图,在中,,于E,DE交AC于点F,M为AF的中点,连接DM,若,则的大小为( ).A.112° B.108° C.104° D.98°3、下列命题中是真命题的是( ).A.有一组邻边相等的平行四边形是菱形 B.对角线互相垂直且相等的四边形是菱形C.对角线相等的四边形是矩形 D.有一个角为直角的四边形是矩形4、平面上六个点A,B,C,D,E,F,构成如图所示的图形,则∠A+∠B+∠C+∠D+∠E+∠F度数是( )A.135度 B.180度 C.200度 D.360度5、如图,在平行四边形中,平分,交边于,,,则的长为( )A.1 B.2 C.3 D.56、如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为( )A.8 B.10 C.16 D.207、将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,则∠EBD的度数( )A.80° B.90° C.100° D.110°8、若一个正多边形的每个内角度数都为108°,则这个正多边形的边数是 ( )A.5 B.6 C.8 D.109、如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是( )A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD10、下列说法错误的是( )A.平行四边形对边平行且相等 B.菱形的对角线平分一组对角C.矩形的对角线互相垂直 D.正方形有四条对称轴第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、矩形的两边长分别为3 cm和4 cm,则矩形的对角线长为_____.2、如图,在▱ABCD中,AC是对角线,∠ACD=90°,点E是BC的中点,AF平分∠BAC,CF⊥AF于点F,连接EF.已知AB=5,BC=13,则EF的长为__.3、如图,正方形中,为上一动点(不含、,连接交于,过作交于,过作于,连接,.下列结论:①;②;③平分;④,正确的是__(填序号).4、矩形的性质定理1:矩形的四个角都是________.符号语言:∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°.矩形的性质定理2:矩形的对角线________.符号语言:∵四边形ABCD是矩形,∴AC = BD.5、如图,A、B、C均为一个正十边形的顶点,则∠ACB=_____°.三、解答题(5小题,每小题10分,共计50分)1、(1)【发现证明】如图1,在正方形中,点,分别是,边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使与重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形中,如果点,分别是,延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出,,之间的数量关系______(不要求证明)②如图3,如果点,分别是,延长线上的动点,且,则,,之间的数量关系是______(不要求证明)(3)【联想拓展】如图1,若正方形的边长为6,,求的长.2、如图,正方形ABCD中,E为BD上一点,AE的延长线交BC的延长线于点F,交CD于点H,G为FH的中点.(1)求证:AE=CE;(2)猜想线段AE,EG和GF之间的数量关系,并证明.3、【问题情境】如图1,在中,,垂足为D,我们可以得到如下正确结论:①;②;③,这些结论是由古希酷著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.(1)请证明“射影定理”中的结论③.(2)【结论运用】如图2,正方形的边长为6,点O是对角线、的交点,点E在上,过点C作,垂足为F,连接.①求证:.②若,求的长.4、如图,在矩形ABCD中,(1)尺规作图(不写作法,保留作图痕迹):作对角线BD的垂直平分线EF分别交AD、BC于E、F点,交BD于O点.(2)在(1)的条件下,求证:AE=CF.5、如图,在中,点D、E分别是边的中点,过点A作交的延长线于F点,连接,过点D作于点G.(1)求证:四边形是平行四边形:(2)若.①当___________时,四边形是矩形;②若四边形是菱形,则________. -参考答案-一、单选题1、B【解析】【分析】根据周长求出边长,利用菱形的面积公式即可求解.【详解】∵菱形的周长为8,∴边长=2,∴菱形的面积=2×2=4,故选:B.【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.2、C【解析】【分析】根据平行四边形及垂直的性质可得为直角三角形,再由直角三角形中斜边上的中线等于斜边的一半可得,由等边对等角及三角形外角的性质得出,根据三角形内角和定理即可得出.【详解】解:∵四边形ABCD为平行四边形,∴,∵,∴,∴为直角三角形,∵M为AF的中点,∴,∴,,∵,∴,∴,∴,故选:C.【点睛】题目主要考查平行四边形的性质,直角三角形中斜边上的中线等于斜边的一半,等边对等角及三角形外角的性质和三角形内角和定理,理解题意,综合运用这些知识点是解题关键.3、A【解析】【分析】根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A、B进行判断;根据矩形的判定方法对C、D进行判断.【详解】解:A、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;B、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;C、对角线互相平分且相等的四边形为矩形,所以该选项不正确;D、有三个角是直角的四边形是矩形,所以该选项不正确.故选:A.【点睛】本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.4、D【解析】【分析】根据三角形外角性质及四边形内角和求解即可.【详解】解:如下图所示:根据三角形的外角性质得,∠1=∠C+∠E,∠2=∠B+∠D,∵∠1+∠2+∠A+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故选:D.【点睛】此题考查了三角形的外角性质,熟记三角形外角性质及四边形内角和为360°是解题的关键.5、B【解析】【分析】先由平行四边形的性质得,,再证,即可求解.【详解】解:四边形是平行四边形,,,,平分,,,,,故选:B.【点睛】本题考查了平行四边形的性质,等腰三角形的判定等知识,解题的关键是灵活应用这些知识解决问题.6、C【解析】【分析】根据线段垂直平分线的判定和性质,可得AE=CE,又由CE+DE+CD=8,即AD+CD=8,继而可得ABCD的周长.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵OE⊥AC,∴OE是线段AC的垂直平分线,∴AE=CE,∵△CDE的周长为8,∴CE+DE+CD=8,即AD+CD =8,∴平行四边形ABCD的周长为2(AD+CD)=16.故选:C.【点睛】本题考查了平行四边形的性质、线段垂直平分线的判定和性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.7、B【解析】【分析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∠ABE+∠A′BE+∠DBC+∠DBC′=180°,且∠EBD=∠A′BE+∠DBC′,继而即可求出答案.【详解】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠EBD=∠A′BE+∠DBC′=180°×=90°.故选B.【点睛】此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.8、A【解析】【分析】先求出多边形的每一个外角的度数,再利用多边形的外角和即可求出答案.【详解】解:∵多边形的每一个内角都等于108°,多边形的内角与外角互为邻补角,∴每个外角是:180°−108°=72°,∴多边形中外角的个数是360°÷72°=5,则多边形的边数是5.故选:A.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟练掌握的内容.9、D【解析】【分析】根据平行四边形的性质解答.【详解】解:∵四边形ABCD是平行四边形,∴AO=OC,故A正确;∴,故B正确; ∴AD=BC,故C正确;故选:D.【点睛】此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.10、C【解析】【分析】根据矩形的性质、平行四边形的性质、菱形的性质和正方形的性质分别进行判断即可.【详解】解:A、平行四边形对边平行且相等,正确,不符合题意;B、菱形的对角线平分一组对角,正确,不符合题意;C、矩形的对角线相等,不正确,符合题意;D、正方形有四条对称轴,正确,不符合题意;故选:C.【点睛】本题考查了矩形的性质、平行四边形的性质、菱形的性质和正方形的性质,掌握以上性质定理是解题的关键.二、填空题1、5cm【解析】略2、##3.5【解析】【分析】延长AB、CF交于点H,由“ASA”可证,可得AC=AH=12,HF=CF,由三角形中位线定理可求解.【详解】解:如图,延长AB、CF交于点H,∵四边形ABCD是平行四边形,∴,∴∠ACD=∠BAC=90°,∴,∵AF平分∠BAC,∴∠BAF=∠CAF=45°,在和中,,∴,∴AC=AH=12,HF=CF,∴BH=AH﹣AB=7,∵点E是BC的中点,HF=CF,∴EF=BH=,故答案为:.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,三角形中位线的定理,添加恰当辅助线构造全等三角形是本题的关键.3、①②④【解析】【分析】连接,延长交于点.可证,进而可得,由此可得出;再由,即可得出;连接交于点,则,证明,即可得出,进而可得;过点作于点,交于点,由于是动点,的长度不确定,而是定值,即可得出不一定平分.【详解】解:如图,连接,延长交于点.∵为正方形的对角线∴,在和中∴∴,∵, ,∴∵,∴∴∴故①正确;∵,∴是等腰直角三角形∴故②正确;连接交于点,则∵∴在和中∴∴∴故④正确.过点作于点,交于点,是动点∵的长度不确定,而是定值∴不一定等于不一定平分故③错误;故答案为:①②④.【点睛】本题考查了正方形性质,全等三角形判定和性质,角平分线性质和判定,等腰三角形的性质与判定等,熟练掌握全等三角形判定和性质,合理添加辅助线构造全等三角形是解题关键.4、 直角 相等【解析】略5、【解析】【分析】根据正多边形外角和和内角和的性质,得、;根据四边形内角和的性质,计算得;根据五边形内角和的性质,计算得,再根据三角形外角的性质计算,即可得到答案.【详解】如图,延长BA∵正十边形∴,正十边形内角,即 根据题意,得四边形内角和为:,且 ∴∴ 根据题意,得五边形内角和为:,且∴∴ 故答案为:.【点睛】本题考查了正多边形、三角形外角的知识;解题的关键是熟练掌握正多边形外角和、正多边形内角和的性质,从而完成求解.三、解答题1、(1)见解析;(2)①不成立,结论:;②,见解析;(3)【解析】【分析】(1)证明,可得出,则结论得证;(2)①将绕点顺时针旋转至根据可证明,可得,则结论得证;②将绕点逆时针旋转至,证明,可得出,则结论得证;(3)求出,设,则,,在中,得出关于的方程,解出则可得解.【详解】(1)证明:把绕点顺时针旋转至,如图1,,,,,,,三点共线,,,,,,,,;(2)①不成立,结论:;证明:如图2,将绕点顺时针旋转至,,,,,,,,;②如图3,将绕点逆时针旋转至,,,,,,,,,.即.故答案为:.(3)解:由(1)可知,正方形的边长为6,,.,,设,则,,在中,,,解得:.,.【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.2、 (1)见解析(2)AE2+ GF2=EG2,证明见解析【解析】【分析】(1)根据“SAS”证明△ADE≌△CDE即可;(2)连接CG,可得CG=GF=GH=FH,再证明∠ECG=90°,然后在Rt△CEG中,可得CE2+CG2=EG2,进而可得线段AE,EG和GF之间的数量关系.(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠ADE=∠CDE, 在△ADE和△CDE中,∴△ADE≌△CDE,∴AE=CE;(2)AE2+ GF2=EG2,理由:连接CG∵△ADE≌△CDE,∴∠1=∠2.∵G为FH的中点,∴CG=GF=GH=FH,∴∠6=∠7.∵∠5=∠6,∴∠5=∠7.∵∠1+∠5=90°,∴∠2+∠7=90°,即∠ECG=90°,在Rt△CEG中,CE2+CG2=EG2,∴AE2+ GF2=EG2.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,以及勾股定理等知识,证明△ADE≌△CDE是解(1)的关键,证明∠ECG=90°是解(2)的关键.3、 (1)见解析;(2)①见解析;②.【解析】【分析】(1)由AA证明,再由相似三角形对应边称比例得到,继而解题;(2)①由“射影定理”分别解得,,整理出,再结合即可证明;②由勾股定理解得,再根据得到,代入数值解题即可.(1)证明:(2)①四边形ABCD是正方形②在中,在,.【点睛】本题考查相似三角形的综合题,涉及勾股定理、正方形等知识,是重要考点,掌握相关知识是解题关键.4、 (1)见解析(2)见解析【解析】【分析】(1)利用尺规作出图形即可.(2)利用全等三角形的性质证明即可.(1)解:如图,直线EF即为所求作..(2)证明:在矩形ABCD中,AD=BC,∠ADB=∠DBC,∵EF为BD的垂直平分线,∴∠EOD=∠FOB=90°,OB=OD,在△EOD与△FOB中,,∴△EOD≌△FOB(ASA),∴ED=BF,∴AD-ED=BC-BF,即AE=CF.【点睛】本题考查了作图-复杂作图,线段的垂直平分线,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.5、 (1)见解析;(2)①3;②【解析】【分析】(1)根据三角形中位线的性质得到DEAB,BD=CD,即可证得四边形ABDF是平行四边形,得到AF=BD=CD,由此得到结论;(2)①由点D、E分别是边BC、AC的中点,得到DE=AB,由四边形是平行四边形,得到DF=2DE=AB=3,再根据矩形的性质得到AC=DF=3;②根据菱形的性质得到DF⊥AC,推出AB⊥AC,利用勾股定理求出AC,得到CE,利用面积法求出答案.(1)证明:∵点D、E分别是边BC、AC的中点,∴DEAB,BD=CD,∵,∴四边形ABDF是平行四边形,∴AF=BD=CD,∴四边形是平行四边形;(2)解:①∵点D、E分别是边BC、AC的中点,∴DE=AB,∵四边形是平行四边形,∴DF=2DE=AB=3,∵四边形是矩形,∴AC=DF=3,故答案为:3;②∵四边形是菱形,∴DF⊥AC,∵DEAB,∴AB⊥AC,∴AD=BC=2.5, ∴AE=EC=2,∵∴∴,故答案为:.【点睛】此题考查了平行四边形的判定及性质,矩形的性质,菱形的性质,三角形中位线的判定及性质,勾股定理,是一道较为综合的几何题,熟练掌握各知识点并应用是解题的关键.
相关试卷
这是一份2020-2021学年第二十二章 四边形综合与测试精品课时作业,共25页。试卷主要包含了下列命题错误的是等内容,欢迎下载使用。
这是一份数学冀教版第二十二章 四边形综合与测试精品同步达标检测题,共25页。
这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品当堂检测题,共30页。