搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练冀教版八年级数学下册第二十二章四边形定向测评试卷(无超纲)

    2022年最新强化训练冀教版八年级数学下册第二十二章四边形定向测评试卷(无超纲)第1页
    2022年最新强化训练冀教版八年级数学下册第二十二章四边形定向测评试卷(无超纲)第2页
    2022年最新强化训练冀教版八年级数学下册第二十二章四边形定向测评试卷(无超纲)第3页
    还剩27页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十二章 四边形综合与测试精品当堂检测题

    展开

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试精品当堂检测题,共30页。
    八年级数学下册第二十二章四边形定向测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列命题不正确的是( )
    A.三边对应相等的两三角形全等
    B.若,则
    C.有一组对边平行、另一组对边相等的四边形是平行四边形
    D.的三边为a、b、c,若,则是直角三角形.
    2、如图,为了测量一块不规则绿地B,C两点间的距离,可以在绿地的一侧选定一点A,然后测量出AB,AC的中点D,E,如果测量出D,E两点间的距离是8m,那么绿地B,C两点间的距离是(  )

    A.4m B.8m C.16m D.20m
    3、如图,把一长方形纸片ABCD的一角沿AE折叠,点D的对应点落在∠BAC内部.若,且,则∠DAE的度数为( )

    A.12° B.24° C.39° D.45°
    4、如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是(  )

    A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD
    5、如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC等于(  )

    A.1 B.2 C.3 D.4
    6、下面性质中,平行四边形不一定具备的是(  )
    A.对角互补 B.邻角互补
    C.对角相等 D.对角线互相平分
    7、下列多边形中,内角和与外角和相等的是(  )
    A. B. C. D.
    8、若一个正多边形的每个内角度数都为108°,则这个正多边形的边数是 (  )
    A.5 B.6 C.8 D.10
    9、如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )

    A.OA=OC,OB=OD B.AB=CD,AO=CO
    C.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD
    10、如图,在正方形ABCD中,,点E在对角线AC上,若,则CDE的面积为( )

    A.3 B.4 C.5 D.6
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在矩形ABCD中,DE⊥CE,AE<BE,AD=4,AB=10,则DE长为________.

    2、在四边形ABCD中,AD∥BC,BC⊥CD,BC=10cm,M是BC上一点,且BM=4cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,当t的值为_____时,以A、M、E、F为顶点的四边形是平行四边形.

    3、如图,在▱ABCD中,AC是对角线,∠ACD=90°,点E是BC的中点,AF平分∠BAC,CF⊥AF于点F,连接EF.已知AB=5,BC=13,则EF的长为__.

    4、如图,四边形是菱形,与相交于点,添加一个条件:________,可使它成为正方形.

    5、在平行四边形ABCD中,对角线AC长为8cm,,,则它的面积为______cm2.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,正方形ABCD中,E为BD上一点,AE的延长线交BC的延长线于点F,交CD于点H,G为FH的中点.

    (1)求证:AE=CE;
    (2)猜想线段AE,EG和GF之间的数量关系,并证明.
    2、如图,在矩形ABCD中,

    (1)尺规作图(不写作法,保留作图痕迹):作对角线BD的垂直平分线EF分别交AD、BC于E、F点,交BD于O点.
    (2)在(1)的条件下,求证:AE=CF.
    3、背景资料:在已知所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当三个内角均小于120°时,费马点P在内部,当时,则取得最小值.

    (1)如图2,等边内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求的度数,为了解决本题,我们可以将绕顶点A旋转到处,此时这样就可以利用旋转变换,将三条线段、、转化到一个三角形中,从而求出_______;
    知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.
    (2)如图3,三个内角均小于120°,在外侧作等边三角形,连接,求证:过的费马点.
    (3)如图4,在中,,,,点P为的费马点,连接、、,求的值.
    (4)如图5,在正方形中,点E为内部任意一点,连接、、,且边长;求的最小值.
    4、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.

    (1)试用含t的式子表示AE、AD、DF的长;
    (2)如图①,连接EF,求证四边形AEFD是平行四边形;
    (3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.
    5、已知在与中,,点在同一直线上,射线分别平分.

    (1)如图1,试说明的理由;
    (2)如图2,当交于点G时,设,求与的数量关系,并说明理由;
    (3)当时,求的度数.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    根据三角形全等的判定定理(定理)、乘方运算法则、平行四边形的判定、勾股定理的逆定理逐项判断即可得.
    【详解】
    解:A、三边对应相等的两三角形全等,此命题正确,不符题意;
    B、若,则,此命题正确,不符题意;
    C、有一组对边平行、另一组对边相等的四边形有可能是等腰梯形,不一定是平行四边形,所以此项命题不正确,符合题意;
    D、的三边为、、,若,即,则是直角三角形,此命题正确,不符题意;
    故选:C.
    【点睛】
    本题考查了三角形全等的判定定理、乘方运算法则、平行四边形的判定、勾股定理的逆定理,熟练掌握各定理是解题关键.
    2、C
    【解析】
    【分析】
    根据三角形中位线定理即可求出.
    【详解】
    解:中,、分别是、的中点,
    为三角形的中位线,


    故选:C.
    【点睛】
    本题考查的是三角形中位线定理的应用,解题的关键是掌握三角形的中位线等于第三边的一半.
    3、C
    【解析】
    【分析】
    由折叠的性质得到,由长方形的性质得到,根据角的和差倍分得到,整理得 ,最后根据解题.
    【详解】
    解:折叠,

    是矩形










    故选:C.
    【点睛】
    本题考查角的计算、折叠性质、数形结合思想等知识,是重要考点,掌握相关知识是解题关键.
    4、D
    【解析】
    【分析】
    根据平行四边形的性质解答.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AO=OC,故A正确;
    ∴,故B正确;
    ∴AD=BC,故C正确;
    故选:D.
    【点睛】
    此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.
    5、B
    【解析】
    【分析】
    根据平行四边形及平行线的性质可得,再由角平分线及等量代换得出,利用等角对等边可得,结合图形即可得出线段长度.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴,
    ∴,
    ∵AE平分,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    故选:B.
    【点睛】
    题目主要考查 平行四边形及平行线的性质,利用角平分线计算,等角对等边等,理解题意,熟练运用平行四边形的性质是解题关键.
    6、A
    【解析】
    【分析】
    直接利用平行四边形的性质:对角相等、对角线互相平分、对边平行且相等,进而分析得出即可.
    【详解】
    解:A、平行四边形对角不一定互补,故符合题意;
    B、平行四边形邻角互补正确,故不符合题意;
    C、平行四边形对角相等正确,故不符合题意.
    D、平行四边形的对角线互相平分正确,故不符合题意;
    故选A.
    【点睛】
    此题主要考查了平行四边形的性质,熟练掌握相关性质是解题关键.
    7、B
    【解析】
    【分析】
    根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.
    【详解】
    解:设所求多边形的边数为n,根据题意得:
    (n-2)•180°=360°,
    解得n=4.
    故选:B.
    【点睛】
    本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.
    8、A
    【解析】
    【分析】
    先求出多边形的每一个外角的度数,再利用多边形的外角和即可求出答案.
    【详解】
    解:∵多边形的每一个内角都等于108°,多边形的内角与外角互为邻补角,
    ∴每个外角是:180°−108°=72°,
    ∴多边形中外角的个数是360°÷72°=5,则多边形的边数是5.
    故选:A.
    【点睛】
    本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟练掌握的内容.
    9、B
    【解析】

    10、A
    【解析】
    【分析】
    根据正方形的性质,全等三角形的性质和三角形的面积公式解答即可.
    【详解】
    ∵正方形ABCD,
    ∴AB=AD,∠BAC=DAC,
    ∵AE=AE,∴△ABE≌△ADE,
    ∴=5,同理△CBE≌△CDE,
    ∴,
    ∵,
    ∴CDE的面积为: =3,
    故选A.
    【点睛】
    本题考查了正方形的性质,关键是根据全等三角形的性质和三角形的面积公式解答.
    二、填空题
    1、
    【解析】
    【分析】
    设AE=x,则BE=10﹣x,由勾股定理得AD2+AE2=DE2,BC2+BE2=CE2,DE2+CE2=CD2,则AD2+AE2+BC2+BE2=CD2,即42+x2+42+(10﹣x)2=102,解得:x=2或x=8(舍去),则AE=2,然后由勾股定理即可求解.
    【详解】
    解:设AE=x,则BE=10﹣x,
    ∵四边形ABCD是矩形,
    ∴CD=AB=10,∠A=∠B=90°,
    ∴AD2+AE2=DE2,BC2+BE2=CE2,
    ∵DE⊥CE,
    ∴∠DEC=90°,
    ∴DE2+CE2=CD2,
    ∴AD2+AE2+BC2+BE2=CD2,
    即42+x2+42+(10﹣x)2=102,
    解得:x=2或x=8(不合题意,舍去),
    ∴AE=2,
    ∴DE===2,
    故答案为:2.
    【点睛】
    本题考查了矩形的性质,勾股定理,掌握勾股定理是解题的关键.
    2、4s或s
    【解析】
    【分析】
    分两种情况:①当点F在线段BM上,即0≤t<2,②当F在线段CM上,即2≤t≤5,列方程求解.
    【详解】
    解:①当点F在线段BM上,即0≤t<2,以A、M、E、F为顶点的四边形是平行四边形,
    则有t=4﹣2t,解得t=,
    ②当F在线段CM上,即2≤t≤5,以A、M、E、F为顶点的四边形是平行四边形,
    则有t=2t﹣4,解得t=4,
    综上所述,t=4或,以A、M、E、F为顶点的四边形是平行四边形,
    故答案为:4s或s.
    【点睛】
    此题考查了动点问题,一元一次方程与动点问题,平行四边形的定义,熟记平行四边形的定义是解题的关键.
    3、##3.5
    【解析】
    【分析】
    延长AB、CF交于点H,由“ASA”可证,可得AC=AH=12,HF=CF,由三角形中位线定理可求解.
    【详解】
    解:如图,延长AB、CF交于点H,

    ∵四边形ABCD是平行四边形,
    ∴,
    ∴∠ACD=∠BAC=90°,
    ∴,
    ∵AF平分∠BAC,
    ∴∠BAF=∠CAF=45°,
    在和中,

    ∴,
    ∴AC=AH=12,HF=CF,
    ∴BH=AH﹣AB=7,
    ∵点E是BC的中点,HF=CF,
    ∴EF=BH=,
    故答案为:.
    【点睛】
    本题考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,三角形中位线的定理,添加恰当辅助线构造全等三角形是本题的关键.
    4、
    【解析】
    【分析】
    根据“有一个角是直角的菱形是正方形”可得到添加的条件.
    【详解】
    解:由于四边形 是菱形,
    如果 ,
    那么四边形是正方形.
    故答案为: .
    【点睛】
    本题考查了正方形的判定,解决本题的关键是熟练掌握正方形的判定定理.
    5、20
    【解析】
    【分析】
    根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.
    【详解】
    解:如图,过B作BE⊥AC于E.

    在直角三角形ABE中,
    ∠BAC=30°,AB=5,
    ∴BE=AB=,
    S△ABC=AC•BE=10,
    ∴S▱ABCD=2S△ABC=20(cm2).
    故答案为:20.
    【点睛】
    本题综合考查了平行四边形的性质,含30度的直角三角形的性质等.先求出对角线分成的两个三角形中其中一个的面积,然后再求平行四边形的面积,这样问题就比较简单了.
    三、解答题
    1、 (1)见解析
    (2)AE2+ GF2=EG2,证明见解析
    【解析】
    【分析】
    (1)根据“SAS”证明△ADE≌△CDE即可;
    (2)连接CG,可得CG=GF=GH=FH,再证明∠ECG=90°,然后在Rt△CEG中,可得CE2+CG2=EG2,进而可得线段AE,EG和GF之间的数量关系.
    (1)
    证明:∵四边形ABCD是正方形,
    ∴AD=CD,∠ADE=∠CDE,
    在△ADE和△CDE中

    ∴△ADE≌△CDE,
    ∴AE=CE;
    (2)
    AE2+ GF2=EG2,理由:
    连接CG
    ∵△ADE≌△CDE,
    ∴∠1=∠2.
    ∵G为FH的中点,
    ∴CG=GF=GH=FH,
    ∴∠6=∠7.
    ∵∠5=∠6,
    ∴∠5=∠7.
    ∵∠1+∠5=90°,
    ∴∠2+∠7=90°,即∠ECG=90°,
    在Rt△CEG中,CE2+CG2=EG2,
    ∴AE2+ GF2=EG2.

    【点睛】
    本题考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,以及勾股定理等知识,证明△ADE≌△CDE是解(1)的关键,证明∠ECG=90°是解(2)的关键.
    2、 (1)见解析
    (2)见解析
    【解析】
    【分析】
    (1)利用尺规作出图形即可.
    (2)利用全等三角形的性质证明即可.
    (1)
    解:如图,直线EF即为所求作.

    (2)
    证明:在矩形ABCD中,AD=BC,∠ADB=∠DBC,
    ∵EF为BD的垂直平分线,
    ∴∠EOD=∠FOB=90°,OB=OD,
    在△EOD与△FOB中,

    ∴△EOD≌△FOB(ASA),
    ∴ED=BF,
    ∴AD-ED=BC-BF,即AE=CF.
    【点睛】
    本题考查了作图-复杂作图,线段的垂直平分线,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    3、 (1)150°;
    (2)见详解;
    (3);
    (4).
    【解析】
    【分析】
    (1)根据旋转性质得出≌,得出∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,根据△ABC为等边三角形,得出∠BAC=60°,可证△APP′为等边三角形,PP′=AP=3,∠AP′P=60°,根据勾股定理逆定理,得出△PP′C是直角三角形,∠PP′C=90°,可求∠AP′C=∠APP+∠PPC=60°+90°=150°即可;
    (2)将△APB逆时针旋转60°,得到△AB′P′,连结PP′,根据△APB≌△AB′P′,AP=AP′,PB=PB′,AB=AB′,根据∠PAP′=∠BAB′=60°,△APP′和△ABB′均为等边三角形,得出PP′=AP,根据,根据两点之间线段最短得出点C,点P,点P′,点B′四点共线时,最小=CB′,点P在CB′上即可;
    (3)将△APB逆时针旋转60°,得到△AP′B′,连结BB′,PP′,得出△APB≌△AP′B′,可证△APP′和△ABB′均为等边三角形,得出PP′=AP,BB′=AB,∠ABB′=60°,根据,可得点C,点P,点P′,点B′四点共线时,最小=CB′,利用30°直角三角形性质得出AB=2AC=2,根据勾股定理BC=,可求BB′=AB=2,根据∠CBB′=∠ABC+∠ABB′=30°+60°=90°,在Rt△CBB′中,B′C=即可;
    (4)将△BCE逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F⊥AB,交AB延长线于F,得出△BCE≌△CE′B′,BE=B′E′,CE=CE′,CB=CB′,可证△ECE′与△BCB′均为等边三角形,得出EE′=EC,BB′=BC,∠B′BC=60°,,得出点C,点E,点E′,点B′四点共线时,最小=AB′,根据四边形ABCD为正方形,得出AB=BC=2,∠ABC=90°,可求∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,根据30°直角三角形性质得出BF=,勾股定理BF=,可求AF=AB+BF=2+,再根据勾股定理AB′=即可.
    (1)
    解:连结PP′,
    ∵≌,
    ∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,
    ∵△ABC为等边三角形,
    ∴∠BAC=60°
    ∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=60°,
    ∴△APP′为等边三角形,
    ,∴PP′=AP=3,∠AP′P=60°,
    在△P′PC中,PC=5,

    ∴△PP′C是直角三角形,∠PP′C=90°,
    ∴∠AP′C=∠APP+∠PPC=60°+90°=150°,
    ∴∠APB=∠AP′C=150°,
    故答案为150°;

    (2)
    证明:将△APB逆时针旋转60°,得到△AB′P′,连结PP′,
    ∵△APB≌△AB′P′,
    ∴AP=AP′,PB=PB′,AB=AB′,
    ∵∠PAP′=∠BAB′=60°,
    ∴△APP′和△ABB′均为等边三角形,
    ∴PP′=AP,
    ∵,
    ∴点C,点P,点P′,点B′四点共线时,最小=CB′,
    ∴点P在CB′上,
    ∴过的费马点.

    (3)
    解:将△APB逆时针旋转60°,得到△AP′B′,连结BB′,PP′,
    ∴△APB≌△AP′B′,
    ∴AP′=AP,AB′=AB,
    ∵∠PAP′=∠BAB′=60°,
    ∴△APP′和△ABB′均为等边三角形,
    ∴PP′=AP,BB′=AB,∠ABB′=60°,

    ∴点C,点P,点P′,点B′四点共线时,最小=CB′,
    ∵,,,
    ∴AB=2AC=2,根据勾股定理BC=
    ∴BB′=AB=2,
    ∵∠CBB′=∠ABC+∠ABB′=30°+60°=90°,
    ∴在Rt△CBB′中,B′C=
    ∴最小=CB′=;

    (4)
    解:将△BCE逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F⊥AB,交AB延长线于F,
    ∴△BCE≌△CE′B′,
    ∴BE=B′E′,CE=CE′,CB=CB′,
    ∵∠ECE′=∠BCB′=60°,
    ∴△ECE′与△BCB′均为等边三角形,
    ∴EE′=EC,BB′=BC,∠B′BC=60°,
    ∵,
    ∴点C,点E,点E′,点B′四点共线时,最小=AB′,
    ∵四边形ABCD为正方形,
    ∴AB=BC=2,∠ABC=90°,
    ∴∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,
    ∵B′F⊥AF,
    ∴BF=,BF=,
    ∴AF=AB+BF=2+,
    ∴AB′=,
    ∴最小=AB′=.

    【点睛】
    本题考查图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质,掌握图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质是解题关键.
    4、 (1)AE=t,AD=12﹣2t,DF=t
    (2)见解析
    (3)3,理由见解析
    【解析】
    【分析】
    (1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;
    (2)根据对边平行且相等的四边形是平行四边形证明;
    (3)根据矩形的定义列出方程,解方程即可.
    (1)
    解:由题意得,AE=t,CD=2t,
    则AD=AC﹣CD=12﹣2t,
    ∵DF⊥BC,∠C=30°,
    ∴DF=CD=t;
    (2)
    解:∵∠ABC=90°,DF⊥BC,
    ∴,
    ∵AE=t,DF=t,
    ∴AE=DF,
    ∴四边形AEFD是平行四边形;
    (3)
    解:当t=3时,四边形EBFD是矩形,
    理由如下:∵∠ABC=90°,∠C=30°,
    ∴AB=AC=6cm,
    ∵,
    ∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,
    解得,t=3,
    ∵∠ABC=90°,
    ∴四边形EBFD是矩形,
    ∴t=3时,四边形EBFD是矩形.
    【点睛】
    此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.
    5、 (1)理由见解析
    (2),理由见解析
    (3)
    【解析】
    【分析】
    (1),,可知,进而可说明;
    (2)如图1所示,连接并延长至点K,分别平分,则设,为的外角,,同理,
    ,得;又由(1)中证明可知,,进而可得到结果;
    (3)如图2所示,过点C作,则,,可得,由(1)中证明可得,在中, ,即,进而可得到结果.
    (1)
    证明:


    在和中



    (2)
    解:.
    理由如下:如图1所示,连接并延长至点K

    分别平分
    则设
    为的外角

    同理可得




    又由(1)中证明可知
    由三角形内角和公式可得



    (3)
    解:当时,如图2所示,过点C作,则

    ,即
    由(1)中证明可得
    在中,根据三角形内角和定理有


    即,解得:
    故.
    【点睛】
    本题考查了全等三角形的判定与性质、三角形的外角性质、三角形内角和定理、平行线的性质、角平分线的性质等知识,连接并延长,利用三角形外角性质证得是解题的关键.

    相关试卷

    2020-2021学年第二十二章 四边形综合与测试精品课时作业:

    这是一份2020-2021学年第二十二章 四边形综合与测试精品课时作业,共25页。试卷主要包含了下列命题错误的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀同步练习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀同步练习题,共33页。试卷主要包含了已知,下列说法错误的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀随堂练习题:

    这是一份初中数学冀教版八年级下册第二十二章 四边形综合与测试优秀随堂练习题,共29页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map