冀教版九年级下册第29章 直线与圆的位置关系综合与测试同步训练题
展开这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试同步训练题,共31页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
A. B. C. D.
2、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点、、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是( )
A. B.
C. D.
3、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.A.3π B.6π C.12π D.18π
4、若正方形的边长为4,则它的外接圆的半径为( )
A. B.4 C. D.2
5、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,-3).则经画图操作可知:△ABC的外接圆的圆心坐标是( )
A.(-2,-1) B.(-1,0) C.(-1,-1) D.(0,-1)
6、如图,,是的切线,,是切点,,是上的点,若,,则的度数为( )
A. B. C. D.
7、若正六边形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )
A.6,3 B.6,3 C.3,6 D.6,3
8、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )
A. B. C. D.
9、已知⊙O的半径为4,,则点A在( )
A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定
10、如图,AB是⊙O的直径,BD与⊙O相切于点B,点C是⊙O上一点,连接AC并延长,交BD于点D,连接OC,BC,若∠BOC=50°,则∠D的度数为( )
A.50° B.55° C.65° D.75°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,是的直径,是的切线,切点为,交于点,点是的中点.若的半径为,,,则阴影部分的面积为________.
2、已知⊙O的直径为6cm,且点P在⊙O上,则线段PO=_________ .
3、Rt的两条直角边分别是一元二次方程的两根,则的外接圆半径为_____.
4、⊙O的半径为3cm,如果圆心O到直线l的距离为d,且d=5cm,那么⊙O和直线l的位置关系是____________.
5、如图,PA,PB是的切线,切点分别为A,B.若,,则AB的长为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,△ABC内接于⊙O,AB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.
(1)求证:直线DC是⊙O的切线;
(2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).
2、如图,⊙O是ABC的外接圆,∠ABC=45°,OCAD,AD交BC的延长线于D,AB交OC于E.
(1)求证:AD是⊙O的切线;
(2)若AE=,CE=2,求⊙O的半径和线段BC的长.
3、如图,中,.
(1)用直尺和圆规作,使圆心在边上,且与、所在直线相切(不写作法,保留作图痕迹);
(2)在(1)的条件下,再从以下两个条件①“,的周长为12cm;②,”中选择一个作为条件,并求的半径.
4、如图,PA,PB是圆的切线,A,B为切点.
(1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);
(2)在(1)的条件下,延长AO交射线PB于C点,若AC=4,PA=3,请补全图形,并求⊙O的半径.
5、如图,AB是ΘO的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.
(1)判断DE所在直线与ΘO的位置关系,并说明理由;
(2)若AE=4,ED=2,求ΘO的半径.
-参考答案-
一、单选题
1、B
【解析】
【分析】
如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
【详解】
解:如图:连接OB,
∵是的切线,B为切点
∴∠OBA=90°
∵
∴∠COB=90°-42°=48°
∴=∠COB=24°.
故选B.
【点睛】
本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
2、A
【解析】
【分析】
设正六边形的边长为1,当在上时,过作于 而 求解此时的函数解析式,当在上时,延长交于点 过作于 并求解此时的函数解析式,当在上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.
【详解】
解:设正六边形的边长为1,当在上时,
过作于 而
当在上时,延长交于点 过作于
同理:
则为等边三角形,
当在上时,连接
由正六边形的性质可得:
由正六边形的对称性可得: 而
由正六边形的对称性可得:在上的图象与在上的图象是对称的,
在上的图象与在上的图象是对称的,
所以符合题意的是A,
故选A
【点睛】
本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.
3、B
【解析】
【分析】
利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
【详解】
解:它的侧面展开图的面积=×2×2×3=6(cm2).
故选:B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
4、C
【解析】
【分析】
根据圆内接正多边形的性质可得正方形的中心即圆心,进而可知正方形的对角线即为圆的直径,根据勾股定理求得正方形对角线的长度即可求得它的外接圆的半径.
【详解】
解:∵四边形是正方形,
∴的交点即为它的外接圆的圆心,
故选C
【点睛】
本题考查了圆内接正多边形的性质,勾股定理,理解正方形的对角线即为圆的直径是解题的关键.
5、A
【解析】
【分析】
首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为△ABC的外心.
【详解】
解:∵△ABC的外心即是三角形三边垂直平分线的交点,
如图所示:EF与MN的交点O′即为所求的△ABC的外心,
∴△ABC的外心坐标是(﹣2,﹣1).
故选:A
【点睛】
此题考查了三角形外心的知识.注意三角形的外心即是三角形三边垂直平分线的交点.解此题的关键是数形结合思想的应用.
6、A
【解析】
【分析】
如图,连接先求解 再利用圆周角定理可得,从而可得答案.
【详解】
解:如图,连接
,是的切线,
故选A
【点睛】
本题考查的是三角形的内角和定理,四边形的内角和定理,圆周角定理的应用,圆的切线的性质的应用,理解是解本题的关键.
7、B
【解析】
【分析】
如图1,⊙O是正六边形的外接圆,连接OA,OB,求出∠AOB=60°,即可证明△OAB是等边三角形,得到OA=AB=6;如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,先求出∠AO1B=60°,然后根据等边三角形的性质和勾股定理求解即可.
【详解】
解:(1)如图1,⊙O是正六边形的外接圆,连接OA,OB,
∵六边形ABCDEF是正六边形,
∴∠AOB=360°÷6=60°,
∵OA=OB,
∴△OAB是等边三角形,
∴OA=AB=6;
(2)如图2,⊙O1是正六边形的内切圆,连接O1A,O1B,过点O1作O1M⊥AB于M,
∵六边形ABCDEF是正六边形,
∴∠AO1B=60°,
∵O1A= O1B,
∴△O1AB是等边三角形,
∴O1A= AB=6,
∵O1M⊥AB,
∴∠O1MA=90°,AM=BM,
∵AB=6,
∴AM=BM,
∴O1M.
故选B.
【点睛】
本题主要考查了正多边形与圆,等边三角形的性质与判定,勾股定理,熟知正多边形与圆的知识是解题的关键.
8、A
【解析】
【分析】
如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.
【详解】
解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点,
记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:
四边形为正方形,则
设 而AB=2,CD=3,EF=5,结合正方形的性质可得:
而
又 而
解得:
故选A
【点睛】
本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.
9、C
【解析】
【分析】
根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.
【详解】
解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,
∴d>r,
∴点A在⊙O外,
故选:C.
【点睛】
本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.
10、C
【解析】
【分析】
首先证明∠ABD=90°,由∠BOC=50°,根据圆周角定理求出∠A的度数即可解决问题.
【详解】
解:∵BD是切线,
∴BD⊥AB,
∴∠ABD=90°,
∵∠BOC=50°,
∴∠A=∠BOC=25°,
∴∠D=90°﹣∠A=65°,
故选:C.
【点睛】
本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.
二、填空题
1、
【解析】
【分析】
根据题意先得出△AOE≌△DOE,进而计算出∠AOD=2∠B=100°,利用四边形ODEA的面积减去扇形的面积计算图中阴影部分的面积.
【详解】
解:连接EO、DO,
∵点E是AC的中点,O点为AB的中点,
∴OE∥BC,
∴∠AOE=∠B,∠EOD=∠BDO,
∵OB=OD,
∴∠B=∠BDO,
∴∠AOE =∠EOD,
在△AOE和△DOE中
,
∴△AOE≌△DOE,
∵点E是AC的中点,
∴AE=AC=2.4,
∵∠AOD=2∠B=2×50°=100°,
∴图中阴影部分的面积=2•×2×2.4-=.
故答案为:.
【点睛】
本题考查切线的性质以及圆周角定理和扇形的面积公式和全等三角形判定性质,注意掌握圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
2、3cm
【解析】
【分析】
根据点与圆的位置关系得出:点P在⊙O上,则即可得出答案.
【详解】
∵⊙O的直径为6cm,
∴⊙O的半径为3cm,
∵点P在⊙O上,
∴.
故答案为:3cm.
【点睛】
本题考查点与圆的位置关系:点P在⊙O外,则,点P在⊙O上,则,点P在⊙O内,则.
3、2.5##
【解析】
【分析】
根据题意先解一元二次方程,进而根据直角三角形的外接圆的半径等于斜边的一边,即可求得答案.
【详解】
解:,
,
解得,
Rt的两条直角边分别为3,4,
斜边长为,
直角三角形的外接圆的圆心在斜边上,且为斜边的中点,
的外接圆半径为.
【点睛】
本题考查的是三角形的外接圆与外心,熟知直角三角形的外心是斜边的中点是解答此题的关键.
4、相离
【解析】
【分析】
根据直线和圆的位置关系的判定方法判断即可.
【详解】
解:∵⊙O的半径为3cm,圆心O到直线l的距离为d=5cm,
∴d>r,
∴直线l与⊙O的位置关系是相离,
故答案为:相离.
【点睛】
本题考查了直线和圆的位置关系的应用,注意:已知⊙O的半径为r,如果圆心O到直线l的距离是d,当d>r时,直线和圆相离,当d=r时,直线和圆相切,当d<r时,直线和圆相交.
5、3
【解析】
【分析】
由切线长定理和,可得为等边三角形,则.
【详解】
解:连接,如下图:
,分别为的切线,
,
为等腰三角形,
,
,
为等边三角形,
,
,
.
故答案为:3.
【点睛】
本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.
三、解答题
1、 (1)见解析
(2)
【解析】
【分析】
(1)连接OC,由题意得,根据等边对等角得,,即可得,则,即可得;
(2)根据三角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.
(1)
证明:如图所示,连接OC,
∵AB是的直径,直线l与相切于点A,
∴,
∵,,
∴,,
∴,
∴,
∴直线DC是的切线.
(2)
解:∵,
∴,
又∵,
∴是等边三角形,
∴,
在中,,
∴,
∴,
∴,
∴阴影部分的面积=.
【点睛】
本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.
2、 (1)见解析
(2)4,
【解析】
【分析】
(1)连接OA.由及圆周角定理求出∠OAD=90°,即可得到结论;
(2)设⊙O的半径为R,在Rt△OAE中,勾股定理求出R, 延长CO交⊙O于F,连接AF,证明△CEB∽△AEF,得到,由此求出⊙O的半径和线段BC的长.
(1)
证明:连接OA.
∵,
∴∠AOC+∠OAD=180°,
∵∠AOC=2∠ABC=2×45°=90°,
∴∠OAD=90°,
∴OA⊥AD,
∵OA是半径,
∴AD是⊙O的切线.
(2)
解:设⊙O的半径为R,则OA=R,OE=R-2.
在Rt△OAE中,,
∴,
解得或(不合题意,舍去),
延长CO交⊙O于F,连接AF,
∵∠AEF=∠CEB,∠B=∠AFE,
∴△CEB∽△AEF,
∴,
∵CF是直径,
∴CF=8,∠CAF=90°,
又∵∠F=∠ABC=45°,
∴∠F=∠ACF=45°,
∴AF=,
∴,
∴BC=.
.
【点睛】
此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键.
3、 (1)见解析
(2)cm
【解析】
【分析】
(1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;
(2)记⊙O与AB的切点为E,连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r,在Rt△AOE中,由AO2=AE2+OE2列出关于r的方程求解即可.
①设AC=3x,AB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;
②设AC=3x,AB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;
(1)
解:如图,
(2)
解:如图,设与相切于点.连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r.
①∵,∴设AC=3x,AB=5x,
∴BC==4x,
∵的周长为12cm,
∴3x+4x+5x=12,
∴x=1,
∴AC=3,AB=5,
∵⊙O 与 AB 、 BC 所在直线相切
∴BE=BC=4,
∴AE=AB-BE=5-4=1,AO=3-r,
在Rt△AOE中,
∵AO2=AE2+OE2,
∴(3-r)2=12+r2,
∴r=;
②∵,∴设AC=3x,AB=5x,
∴BC==4x,
∵,
∴4x=12,
∴x=1,
∴AC=3,AB=5,
∵⊙O 与 AB 、 BC 所在直线相切
∴BE=BC=4,
∴AE=AB-BE=5-4=1,AO=3-r,
在Rt△AOE中,
∵AO2=AE2+OE2,
∴(3-r)2=12+r2,
∴r=;
即⊙O的半径为cm.
【点睛】
本题考查了作图—复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.
4、 (1)见解析;
(2)见解析,的半径为
【解析】
【分析】
(1)过点B作BP的垂线,作∠APB的平分线,二线的交点就是圆心;
(2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.
(1)
如图所示,点O即为所求
(2)
如图,∵PA是圆的切线,AO是半径,PB是圆的切线,
∴∠CAP=90°,PA=PB=3,∠CBO=90°,
∵AC=4,
∴PC==5,BC=5-3=2,
设圆的半径为x,则OC=4-x,
∴,
解得x=,
故圆的半径为.
【点睛】
本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.
5、 (1)相切,理由见解析
(2)
【解析】
【分析】
(1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;
(2)连接BD,根据勾股定理得到AD==2,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,即可求解.
(1)
解:所在直线与相切.
理由:连接.
∵,
∴.
∵平分,
∴.
∴.
∴.
∴.
∵,
∴.
∴.
∴.
∵是半径,
∴所在直线与相切.
(2)
解:连接.
∵是的直径,
∴.
∴.
又∵,
∴.
∴.
∵,,,
∴.
∴.
∴的半径为.
【点睛】
本题考查的是直线与圆的位置关系,相似三角形的判定和性质及勾股定理,正确的作出辅助线是解题的关键.
相关试卷
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀一课一练,共28页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后作业题,共34页。
这是一份初中第29章 直线与圆的位置关系综合与测试复习练习题,共30页。试卷主要包含了以半径为1的圆的内接正三角形,如图,一把宽为2cm的刻度尺等内容,欢迎下载使用。