数学冀教版第29章 直线与圆的位置关系综合与测试课后作业题
展开
这是一份数学冀教版第29章 直线与圆的位置关系综合与测试课后作业题,共26页。
九年级数学下册第二十九章直线与圆的位置关系定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )A.相离 B.相切 C.相交 D.相交或相切2、如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是( )A.30° B.36° C.60° D.72°3、在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法错误的是( )A.当a<5时,点B在⊙A内 B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外 D.当a>5时,点B在⊙A外4、已知点A是⊙O外一点,且⊙O的半径为3,则OA可能为( )A.1 B.2 C.3 D.45、如图,BD是⊙O的切线,∠BCE=30°,则∠D=( )A.40° B.50° C.60° D.30°6、在平面直角坐标系xOy中,已知点A(﹣4,﹣3),以点A为圆心,4为半径画⊙A,则坐标原点O与⊙A的位置关系是( )A.点O在⊙A内 B.点O在⊙A外C.点O在⊙A上 D.以上都有可能7、如图,与相切于点,经过的圆心与交于,若,则( )A. B. C. D.8、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.A.3π B.6π C.12π D.18π9、如图,为的直径,为外一点,过作的切线,切点为,连接交于,,点在右侧的半圆周上运动(不与,重合),则的大小是( )A.19° B.38° C.52° D.76°10、的半径为5 , 若直线与该圆相交, 则圆心到直线的距离可能是 ( )A.3 B.5 C.6 D.10第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB是⊙O的切线,A为切点,连结OA、OB.若OA=5,AB=6,则tan∠AOB=______.2、已知圆O的半径为10cm,OP=8cm,则点P和圆O的位置关系是________.3、如图,PB与⊙O相切于点B,OP与⊙O相交于点A,∠P=30°,若⊙O的半径为2,则OP的长为 _____.4、⊙O的半径为3cm,如果圆心O到直线l的距离为d,且d=5cm,那么⊙O和直线l的位置关系是____________.5、如图,为的直径,、为上的点,连接、、、,为延长线上一点,连接,且,.若的半径为,则点到的距离为________.三、解答题(5小题,每小题10分,共计50分)1、如图,△ABC内接于⊙O,AB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.(1)求证:直线DC是⊙O的切线;(2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).2、如图,四边形OAEC是平行四边形,以O为圆心,OC为半径的圆交CE于D,延长CO交O于B,连接AD、AB,AB是O的切线.(1)求证:AD是O的切线.(2)若O的半径为4,,求平行四边形OAEC的面积.3、如图,在△ABC中,∠ACB=90°,AC=BC,O点在△ABC内部,⊙O经过B、C两点且交AB于点D,连接CO并延长交线段AB于点G,以GD、GC为邻边作平行四边形GDEC.(1)求证:直线DE是⊙O的切线;(2)若DE=7,CE=5,求⊙O的半径.4、数学课上老师提出问题:“在矩形中,,,是的中点,是边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”.小明的思路是:解题应分类讨论,显然不可能与边及所在直线相切,只需讨论与边及相切两种情形.请你根据小明所画的图形解决下列问题:(1)如图1,当与相切于点时,求的长;(2)如图2,当与相切时,①求的长;②若点从点出发沿射线移动,连接,是的中点,则在点的移动过程中,直接写出点在内的路径长为______.5、如图,在中,,BO平分,交AC于点O,以点O为圆心,OC长为半径画.(1)求证:AB是的切线;(2)若,,求的半径. -参考答案-一、单选题1、B【解析】【分析】圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.【详解】解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm, ⊙O的半径等于圆心O到直线l的距离, 直线l与⊙O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.2、B【解析】【分析】求出正五边形的一个内角的度数,再根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵正五边形ABCDE中,∴∠BCD==108°,CB=CD,∴∠CBD=∠CDB=(180°-108°)=36°,故选:B.【点睛】本题考查了正多边形和圆,求出正五边形的一个内角度数是解决问题的关键.3、A【解析】【分析】根据数轴以及圆的半径可得当d=r时,⊙A与数轴交于两点:1、5,进而根据点到圆心的距离与半径比较即可求得点与圆的位置关系,进而逐项分析判断即可【详解】解:∵圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项B、C、D正确,选项A错误.故选A.【点睛】本题考查了数轴,点与圆的位置关系,掌握点与圆的位置关系是解题的关键.4、D【解析】【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.【详解】解:∵点A为⊙O外的一点,且⊙O的半径为3,∴线段OA的长度>3.故选:D.【点睛】此题考查了点和圆的位置关系与数量之间的联系:点到圆心的距离大于圆的半径,则点在圆外.5、D【解析】【分析】连接,根据同弧所对的圆周角相等,等角对等边,三角形的外角性质可得,根据切线的性质可得,根据直角三角形的两个锐角互余即可求得.【详解】解:连接 BD是⊙O的切线故选D【点睛】本题考查了切线的性质,等弧所对的圆周角相等,直角三角形的两锐角互余,掌握切线的性质是解题的关键.6、B【解析】【分析】本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当d>r时,点在圆外;当d=r时,点在圆上;点在圆外;当d<r时,点在圆内;来确定点与圆的位置关系.【详解】解:∵点A(﹣4,﹣3),∴,∵⊙A的半径为4,∴,∴点O在⊙A外;故选:B【点睛】本题考查了点与圆的位置关系及坐标与图形性质,能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系.7、B【解析】【分析】连结CO,根据切线性质与相切于点,得出OC⊥BC,根据直角三角形两锐角互余∠COB=90°-∠B=90°-40°=50°,然后利用圆周角定理即可.【详解】解:连结CO,∵与相切于点,∴OC⊥BC,∴∠COB+∠B=90°,∵,∴∠COB=90°-∠B=90°-40°=50°,∴.故选B.【点睛】本题考查圆的切线性质,直角三角形两锐角互余性质,圆周角定理,掌握圆的切线性质,直角三角形两锐角互余性质,圆周角定理是解题关键.8、B【解析】【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:它的侧面展开图的面积=×2×2×3=6(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9、B【解析】【分析】连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 为的直径, 为的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.10、A【解析】【分析】根据直线l和⊙O相交⇔d<r,即可判断.【详解】解:∵⊙O的半径为5,直线l与⊙O相交,∴圆心D到直线l的距离d的取值范围是0≤d<5,故选:A.【点睛】本题考查直线与圆的位置关系,解题的关键是记住①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.二、填空题1、【解析】【分析】由题意易得∠OAB=90°,然后根据三角函数可进行求解.【详解】解:∵AB是⊙O的切线,∴∠OAB=90°,在Rt△OAB中,OA=5,AB=6,∴,故答案为.【点睛】本题主要考查三角函数与切线的性质,熟练掌握三角函数与切线的性质是解题的关键.2、点P在圆内【解析】【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系,设点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】解:∵点P到圆心的距离OP=8cm,小于⊙O的半径10cm,∴点P在圆内.故答案为:点P在圆内.【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.3、4【解析】【分析】连接OB,利用切线性质,判定三角形POB是直角三角形,利用直角三角形的性质,确定PO的长度即可.【详解】如图,连接OB,∵PB与⊙O相切于点B,∴∠PBO=90°,∵∠P=30°,OB=2,∴PO=4,故答案为:4.【点睛】本题考查了切线性质,直角三角形的性质,熟练掌握切线的性质是解题的关键.4、相离【解析】【分析】根据直线和圆的位置关系的判定方法判断即可.【详解】解:∵⊙O的半径为3cm,圆心O到直线l的距离为d=5cm,∴d>r,∴直线l与⊙O的位置关系是相离,故答案为:相离.【点睛】本题考查了直线和圆的位置关系的应用,注意:已知⊙O的半径为r,如果圆心O到直线l的距离是d,当d>r时,直线和圆相离,当d=r时,直线和圆相切,当d<r时,直线和圆相交.5、##【解析】【分析】连接OC,证明CD⊥OC;运用勾股定理求出OD=10,过点A作AF⊥DC,交DC延长线于点F,过点C作CG⊥AD于点G,在Rt△OCD中运用等积关系求出CD,同理,在△ACD中运用等积关系可求出AF【详解】解:连接OC,∵AB是圆的直径,∴ ∴ ∵ ∴ ∵ ∴ ∴ ∴,即OC⊥CD∵的半径为 ∴ 在Rt△OCD中, ∴ ∴ 过点A作AF⊥DC,交DC延长线于点F,过点C作CG⊥AD于点G,∵ ∴,解得, 同理:∴∴ 故答案为:【点睛】本题考查了切线的判定、三角形面积、勾股定理等知识,解题的关键是作辅助线,构造直角三角形.三、解答题1、 (1)见解析(2)【解析】【分析】(1)连接OC,由题意得,根据等边对等角得,,即可得,则,即可得;(2)根据三角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.(1)证明:如图所示,连接OC,∵AB是的直径,直线l与相切于点A,∴,∵,,∴,,∴,∴,∴直线DC是的切线.(2)解:∵,∴,又∵,∴是等边三角形,∴,在中,,∴,∴,∴,∴阴影部分的面积=.【点睛】本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.2、 (1)见解析(2)32【解析】【分析】(1)连接OD,证明,可得,根据切线的性质可得,进而可得,即可证明AD是O的切线;(2)根据平行四边形OAEC的面积等于2倍即可求解.(1)证明:连接OD.∵四边形OAEC是平行四边形,∴,又∵,∴,∵AB与相切于点B,∴,又∵OD是的半径,∴AD为的切线.(2)∵在Rt△AOD中,∴平行四边形OABC的面积是【点睛】本题考查了切线的性质与判定,平行四边形的性质,三角形全等的性质与判定,掌握切线的性质与判定是解题的关键.3、 (1)见解析(2)4【解析】【分析】(1)连接OD,根据题意和平行四边形的性质可得DE∥CG,可得OD⊥DE,即可求解;(2)设⊙O的半径为r,因为∠GOD=90°,根据勾股定理可求解r,当r=2时,OG=5,此时点G在⊙O外,不合题意,舍去,可求解.(1)证明:连接OD, ∵∠ACB=90°,AC=BC,∴∠ABC=45°,∴∠COD=2∠ABC=90°,∵四边形GDEC是平行四边形,∴DE∥CG,∴∠ODE+∠COD=180°,∴∠ODE=90°,即OD⊥DE,∵OD是半径,∴直线DE是⊙O的切线;(2)解:设⊙O的半径为r,∵四边形GDEC是平行四边形,∴CG=DE=7,DG=CE=5,∵∠GOD=90°,∴OD2+OG2=DG2,即r2+(7﹣r)2=52,解得:r1=3,r2=4,当r=3时,OG=4>3,此时点G在⊙O外,不合题意,舍去,∴r=4,即⊙O的半径4.【点睛】本题主要考查了平行四边形的性质,切线的性质和判定,勾股定理,熟练掌握切线的判定定理是解决本题的关键.4、 (1)BP=2(2)①4.8;②9.6【解析】【分析】(1)连接PT,由⊙P与AD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在Rt△BPE中,用勾股定理即得BP=2;(2)①由⊙P与CD相切,有PC=PE,设BP=x,则PC=PE=10-x,在Rt△BPE中,由勾股定理得x2+22=(10-x)2,即可解得BP=4.8;②点M在⊙P内的路径为EM,过P作PN⊥EM于N,由EM是△ABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6.(1)连接PT,如图:∵⊙P与AD相切于点T,∴∠ATP=90°,∵四边形ABCD是矩形,∴∠A=∠B=90°,∴四边形ABPT是矩形,∴PT=AB=4=PE,∵E是AB的中点,∴BE=AB=2,在Rt△BPE中,;(2)①∵⊙P与CD相切,∴PC=PE,设BP=x,则PC=PE=10-x,在Rt△BPE中,BP2+BE2=PE2,∴x2+22=(10-x)2,解得x=4.8,∴BP=4.8;②点Q从点B出发沿射线BC移动,M是AQ的中点,点M在⊙P内的路径为EM,过P作PN⊥EM于N,如图:由题可知,EM是△ABQ的中位线,∴EM∥BQ,∴∠BEM=90°=∠B,∵PN⊥EM,∴∠PNE=90°,EM=2EN,∴四边形BPNE是矩形,∴EN=BP=4.8,∴EM=2EN=9.6.故答案为:9.6.【点睛】本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是△ABQ的中位线.5、 (1)见解析(2)2.4.【解析】【分析】(1)过O作OD⊥AB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案;(2)设圆O的半径为r,即OC=r,由得BC=3r,由勾股定理求得AD=,AB=3r+根据方程求解即可.(1)如图所示:过O作OD⊥AB交AB于点D.∵OC⊥BC,且BO平分∠ABC,∴OD=OC,∵OC是圆O的半径∴AB与圆O相切.(2)设圆O的半径为r,即OC=r,∵∴ ∴ ∵OC⊥BC,且OC是圆O的半径∴BC是圆O的切线,又AB是圆O的切线,∴BD=BC=3r在中, ∴ ∴ 在中, ∴ 整理得, 解得,,(不合题意,舍去)∴的半径为2.4【点睛】此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.
相关试卷
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品达标测试,共39页。试卷主要包含了以半径为1的圆的内接正三角形,如图,FA等内容,欢迎下载使用。
这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试精品精练,共32页。试卷主要包含了如图所示,在的网格中,A等内容,欢迎下载使用。
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀达标测试,共34页。试卷主要包含了若O是ABC的内心,当时,,如图,FA,已知M等内容,欢迎下载使用。