初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试复习练习题
展开
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试复习练习题,共28页。
九年级数学下册第二十九章直线与圆的位置关系专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,边长为4的正三角形外接圆,以其各边为直径作半圆,则图中阴影部分面积为( )A.12+2π B.4+π C.24+2π D.12+14π2、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )A.6 B. C.3 D.3、如图,一把宽为2cm的刻度尺(单位:cm),放在一个圆形茶杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和10,茶杯的杯口外沿半径为( )A.10cm B.8cm C.6cm D.5cm4、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )A. B. C. D.5、已知⊙O的半径等于8,点P在直线l上,圆心O到点P的距离为8,那么直线l与⊙O的位置关系是( )A.相切 B.相交C.相离、相切或相离 D.相切或相交6、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.A.3π B.6π C.12π D.18π7、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<28、如图,⊙O的半径为2,PA,PB,CD分别切⊙O于点A,B,E,CD分别交PA,PB于点C,D,且P,E,O三点共线.若∠P=60°,则CD的长为( )A.4 B.2 C.3 D.69、如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是( )A.30° B.36° C.45° D.72°10、若O是ABC的内心,当时,( )A.130° B.160° C.100° D.110°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知边长为2的正三角形,能将其完全覆盖的最小圆的面积为__________.2、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.3、如图,直线AB与x轴、y轴分别相交于A、B两点,点A(-3,0),点 B(0,),圆心P的坐标为(1,0),圆P与y轴相切与点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,令圆心P的横坐标为m,则m的取值范围是________.4、如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30°.则∠APB=________度;5、一个正多边形的中心角是,则这个正多边形的边数为________.三、解答题(5小题,每小题10分,共计50分)1、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.(1)求证是的切线;(2)若,,求的半径.2、如图,△ABC内接于⊙O,AB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.(1)求证:直线DC是⊙O的切线;(2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).3、如图,是的直径,是半径,连接,.延长至点,使,过点作交的延长线于点.(1)求证:是的切线;(2)若,,求半径的长.4、如图,中,.(1)用直尺和圆规作,使圆心在边上,且与、所在直线相切(不写作法,保留作图痕迹);(2)在(1)的条件下,再从以下两个条件①“,的周长为12cm;②,”中选择一个作为条件,并求的半径.5、如图,在中,,平分交于点D,点O在上,以点O为圆心,为半径的圆恰好经过点D,分别交、于点E、F.(1)试判断直线与的位置关系,并说明理由;(2)若,,求阴影部分的面积(结果保留). -参考答案-一、单选题1、A【解析】【分析】正三角形的面积加上三个小半圆的面积,再减去中间大圆的面积即可得到结果.【详解】解:正三角形的面积为:,三个小半圆的面积为:,中间大圆的面积为:,所以阴影部分的面积为:,故选:【点睛】本题考查了正多边形与圆,圆的面积的计算,正三角形的面积的计算,正确的识别图形是解题的关键.2、D【解析】【分析】如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.【详解】解:如图所示,设圆的圆心为O,连接OC,OB,∵AC,AB都是圆O的切线,∴∠OCA=∠OBA=90°,OC=OB,又∵OA=OA,∴Rt△OCA≌Rt△OBA(HL),∴∠OAC=∠OAB,∵∠DAC=60°,∴,∴∠AOB=30°,∴OA=2AB=6,∴,∴圆O的直径为,故选D.【点睛】本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.3、D【解析】【分析】作OD⊥AB于C,OC的延长线交圆于D,其中点为圆心,为半径,cm,cm;设茶杯的杯口外沿半径为,在中,由勾股定理知,进而得出结果.【详解】解:作OD⊥AB于C,OC的延长线交圆于D,其中点为圆心,为半径,由题意可知cm,cm;∵∴AC=BC=4cm,设茶杯的杯口外沿半径为则在中,由勾股定理知解得故选D.【点睛】本题考查了垂径定理,切线的性质,勾股定理的应用.解题的关键在于将已知线段长度转化到一个直角三角形中求解计算.4、B【解析】【分析】如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.【详解】解:如图:连接OB,∵是的切线,B为切点∴∠OBA=90°∵∴∠COB=90°-42°=48°∴=∠COB=24°.故选B.【点睛】本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.5、D【解析】【分析】根据垂线段最短,则点O到直线l的距离≤5,则直线l与⊙O的位置关系是相切或相交.【详解】解:的半径为8,,点到直线的距离,直线与的位置关系是相切或相交.故选:D.【点睛】此题要特别注意OP不一定是点到直线的距离.判断点和直线的位置关系,必须比较点到直线的距离和圆的半径之间的大小关系.6、B【解析】【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:它的侧面展开图的面积=×2×2×3=6(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7、A【解析】【分析】点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.【详解】解:∵⊙O的半径为4,点P 在⊙O外部,∴OP需要满足的条件是OP>4,故选:A.【点睛】此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.8、A【解析】【分析】,先证明,得出,,得出,过点作,在中,设,则,利用勾股定理求出,即可求解.【详解】解:连接,在和,PA,PB,分别切⊙O于点A,B,,,,,,是等边三角形,,,又,,,,过点作,如下图根据等腰三角形的性质,点为的中点,,在中,设,则,,,解得:,,,故选:A.【点睛】本题考查了圆的切线,三角形全等、等腰三角形、勾股定理,解题的关键是添加适当的辅助线,掌握切线的性质来求解.9、B【解析】【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;【详解】解:如图,连接OC,OD.∵五边形ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B【点睛】本题主要考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10、A【解析】【分析】由三角形内角和以及内心定义计算即可【详解】∵∴又∵O是ABC的内心∴OB、OC为角平分线,∴∴180°=180°-50°=130°故选:A.【点睛】本题考查了三角形内心的定义,与三角形各边都相切的圆叫做三角形的内切圆.三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.二、填空题1、##2、【解析】【分析】先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.【详解】解:∵BC是圆O的切线,∴∠OBC=90°,∵四边形ABCO是平行四边形,∴AO=BC,又∵AO=BO,∴BO=BC,∴∠BOC=∠BCO=45°,∵OD=OB,∴∠ODB=∠OBD,∵∠ODB+∠OBD=∠BOC,∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,故答案为:22.5°.【点睛】本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.3、【解析】【分析】当⊙P在直线AB下方与直线AB相切时,可求得此时m的值;当⊙P在直线AB上方与直线AB相切时,可求得此时m的值,从而可确定符合题意的m的取值范围.【详解】∵圆心P的坐标为(1,0),⊙P与y轴相切与点O∴⊙P的半径为1∵点A(-3,0),点 B(0,)∴OA=3,∴∴∠BAO=30° 当⊙P在直线AB下方与直线AB相切时,如图,设切点为C,连接PC则PC⊥AB,且PC=1∴AP=2PC=2∴OP=OA−AP=3−2=1∴P点坐标为(−1,0)即m=−1当⊙P在直线AB上方与直线AB相切时,如图,设切点为C,连接PD则PD⊥AB,且PD=1∴AP=2PD=2∴OP=OA+AP=3+2=5∴P点坐标为(−5,0)即m=−5∴⊙P沿x轴向左移动,当⊙P与直线AB相交时,m的取值范围为故答案为:【点睛】本题考查了直线与圆相交的位置关系,切线的性质定理等知识,这里通过讨论直线与圆相切的情况来解决直线与圆相交的情况,体现了转化思想,注意相切有两种情况,不要出现遗漏的情况.4、60【解析】【分析】先根据圆的切线的性质可得,从而可得,再根据切线长定理可得,然后根据等边三角形的判定与性质即可得.【详解】解:是的切线,,,,,是等边三角形,,故答案为:60.【点睛】本题考查了圆的切线的性质、切线长定理等知识点,熟练掌握圆的切线的性质是解题关键.5、九##9【解析】【分析】根据正多边形的每个中心角相等,且所有中心角的度数和为360°进行求解即可.【详解】解:设这个正多边形的边数为n,∵这个正多边形的中心角是40°,∴,∴,∴这个正多边形是九边形,故答案为:九.【点睛】本题主要考查了正多边形的性质,熟知正多边形中心角的度数和为360度是解题的关键.三、解答题1、 (1)见解析(2)【解析】【分析】(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;(2)证明,利用相似三角形的性质可求的半径.(1)证明:连接,∵,∴,∴是直径,是的中点.∵平分,∴,∵,∴,∴,∴.又∵,∴,∴,又∵经过半径的外端,∴是的切线.(2)解:∵,∴,在与中,,,∴.∴,在中,,,∴.设半径为,则,,即,∴.∴的半径为.【点睛】本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.2、 (1)见解析(2)【解析】【分析】(1)连接OC,由题意得,根据等边对等角得,,即可得,则,即可得;(2)根据三角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.(1)证明:如图所示,连接OC,∵AB是的直径,直线l与相切于点A,∴,∵,,∴,,∴,∴,∴直线DC是的切线.(2)解:∵,∴,又∵,∴是等边三角形,∴,在中,,∴,∴,∴,∴阴影部分的面积=.【点睛】本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.3、 (1)证明见解析(2)⊙O半径的长为【解析】【分析】(1)根据角度的数量关系,可得,即,进而可证是的切线;(2)由题意知,,由可得的值,由,知,,得,在中,,求解即可.(1)证明:∵是的直径∴∴∵∴∴, ∴∴是的切线;(2)解:∵,∴∵∴∵,∴∴, ∵∴∴,在中,,即∴∴半径长为.【点睛】本题考查了切线的判定,勾股定理,正切值.解题的关键在于对知识的灵活运用.4、 (1)见解析(2)cm【解析】【分析】(1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;(2)记⊙O与AB的切点为E,连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r,在Rt△AOE中,由AO2=AE2+OE2列出关于r的方程求解即可.①设AC=3x,AB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;②设AC=3x,AB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;(1)解:如图,(2)解:如图,设与相切于点.连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r.①∵,∴设AC=3x,AB=5x,∴BC==4x,∵的周长为12cm,∴3x+4x+5x=12,∴x=1,∴AC=3,AB=5,∵⊙O 与 AB 、 BC 所在直线相切∴BE=BC=4,∴AE=AB-BE=5-4=1,AO=3-r,在Rt△AOE中,∵AO2=AE2+OE2,∴(3-r)2=12+r2,∴r=;②∵,∴设AC=3x,AB=5x,∴BC==4x,∵,∴4x=12,∴x=1,∴AC=3,AB=5,∵⊙O 与 AB 、 BC 所在直线相切∴BE=BC=4,∴AE=AB-BE=5-4=1,AO=3-r,在Rt△AOE中,∵AO2=AE2+OE2,∴(3-r)2=12+r2,∴r=;即⊙O的半径为cm.【点睛】本题考查了作图—复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.5、 (1)BC与⊙O相切,理由见详解(2)【解析】【分析】(1)根据题意先证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;(2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.(1)解: BC与⊙O相切.证明:∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA.∴∠CAD=∠ODA.∴OD∥AC.∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切;(2)∵,∠ODB=90°,,∴,在Rt△OBD中, 由勾股定理得:,∴S△OBD= OD•BD= ,S扇形ODF= ,∴阴影部分的面积=.【点睛】本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.
相关试卷
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀一课一练,共37页。试卷主要包含了以半径为1的圆的内接正三角形等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题,共33页。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课时作业,共31页。