冀教版九年级下册第30章 二次函数综合与测试课后复习题
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试课后复习题,共29页。试卷主要包含了若二次函数y=ax2+bx+c等内容,欢迎下载使用。
九年级数学下册第三十章二次函数专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
A.2 个 B.3 个 C.4 个 D.5 个.
2、若二次函数y=a(x+b)2+c(a≠0)的图象,经过平移后可与y=(x+3)2的图象完全重合,则a,b,c的值可能为( )
A.a=1,b=0,c=﹣2 B.a=2,b=6,c=0
C.a=﹣1,b=﹣3,c=0 D.a=﹣2,b=﹣3,c=﹣2
3、如图,直线与y轴交于点A,与直线交于点B,若抛物线的顶点在直线上移动,且与线段、都有公共点,则h的取值范围是( )
A. B. C. D.
4、如图,若二次函敞的图象过点,且与x轴交点横坐标分别为,,其中,.得出结论:①;②;③;④.上述结论正确的有( )个.
A.1 B.2 C.3 D.4
5、在平面直角坐标系中,将抛物线y=x2﹣2x+1先向左平移3个单位长度,再向下平移2个单位长度,经过两次平移后所得抛物线的顶点坐标是( )
A.(4,2) B.(﹣2,2) C.(4,﹣2) D.(﹣2,﹣2)
6、二次函数的图象如图所示,那么下列说法正确的是( )
A. B.
C. D.
7、若二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,1),(4,6),(3,1),则( )
A.y≤3 B.y≤6 C.y≥-3 D.y≥6
8、下列函数中,随的增大而减小的函数是( )
A. B. C. D.
9、已知,是抛物线上的点,且,下列命题正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
10、如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,且经过点(0,2).有下列结论:①abc<0;②b2﹣4ac>0:③9a+3b+c<2;④3a+c<0;⑤若(﹣,y1),(﹣,y2),(4,y3)是抛物线上的点,则y3<y1<y2,其中正确结论的个数是( )
A.2 B.3 C.4 D.5
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如果(2,y1)(3,y2)是抛物线y=(x+1)2上两点,那么y1_____y2.(填“>”或“<”)
2、某农场拟建两间矩形饲养室,一面靠足够长的墙体,中间用一道围栏隔开,并在如图所示的两处各留宽的门,所有围栏的总长(不含门)为,若要使得建成的饲养室面积最大,则利用墙体的长度为______.
3、抛物线与x轴的两个交点之间的距离为4,则t的值是______.
4、如果二次函数的图像上有两点(2,y1)和(4,y2),那么y1________y2.(填“>”、“=”或“0,∴a+b+c>0,故命题正确;
(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
故选C.
【点睛】
本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
2、A
【解析】
【分析】
根据二次函数的平移性质得出a不发生变化,即可判断a=1.
【详解】
解:∵二次函数y=a(x+b)2+c的图形,经过平移后可与y=(x+3)2的图形完全叠合,
∴a=1.
故选:A.
【点睛】
此题主要考查了二次函数的平移性质,根据已知得出a的值不变是解题关键.
3、B
【解析】
【分析】
将与联立可求得点B的坐标,然后由抛物线的顶点在直线可求得k=−h,于是可得到抛物线的解析式为y=(x−h)2−h,由图形可知当抛物线经过点B和点C时抛物线与线段AB、BO均有交点,然后将点C和点B的坐标代入抛物线的解析式可求得h的值,从而可判断出h的取值范围.
【详解】
解:∵将与联立得:,
解得:.
∴点B的坐标为(−2,1),
由抛物线的解析式可知抛物线的顶点坐标为(h,k),
∵将x=h,y=k,代入得y=−x得:−h=k,解得k=−h,
∴抛物线的解析式为y=(x−h)2−h,
如图1所示:当抛物线经过点C时,
将C(0,0)代入y=(x−h)2−h得:h2−h=0,解得:h1=0(舍去),h2=;
如图2所示:当抛物线经过点B时,
将B(−2,1)代入y=(x−h)2−h得:(−2−h)2−h=1,整理得:2h2+7h+6=0,解得:h1=−2,h2=−(舍去).
综上所述,h的范围是−2≤h≤,即−2≤h≤
故选:B.
【点睛】
本题主要考查的是二次函数的综合应用,解答本题主要应用了一次函数的交点与一元二次方程组的关系、待定系数法求二次函数的解析式,通过平移抛物线探究出抛物线与线段AB、BO均有交点时抛物线经过的“临界点”为点B和点O是解题解题的关键.
4、C
【解析】
【分析】
由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,可判断①,二次函敞的图象过点,结合图象可得:在抛物线上,再求解抛物线的对称轴可判断②,二次函敞的顶点坐标为:可判断③,先利用时的函数值求解的取值范围,从而可判断④,从而可得答案.
【详解】
解:由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,
故①符合题意;
二次函敞的图象过点,结合图象可得:
在抛物线上,
抛物线的对称轴为:
故②符合题意;
二次函敞的顶点坐标为:结合图象可得:
而
故③不符合题意;
当时,
又由图象可得:时,
解得:
故④符合题意;
综上:符合题意的有:①②④
故选C
【点睛】
本题考查的是二次函数的图象与性质,掌握“利用二次函数的图象与性质判断代数式的符号”是解本题的关键.
5、D
【解析】
【分析】
求出抛物线y=x2﹣2x+1的顶点坐标为 ,即可求解.
【详解】
解:∵ ,
∴抛物线y=x2﹣2x+1的顶点坐标为 ,
∴将抛物线y=x2﹣2x+1先向左平移3个单位长度,再向下平移2个单位长度,经过两次平移后所得抛物线的顶点坐标是 .
故选:D
【点睛】
本题主要考查了二次函数图象的平移,熟练掌握二次函数图象平移法则“左加右减,上加下减”是解题的关键.
6、D
【解析】
【分析】
根据二次函数图象性质解题.
【详解】
解:A.由图可知,二次函数图象的对称轴为:x=1,即,故A不符合题意;
B.二次函数图象与y轴交于负半轴,即c
相关试卷
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课时练习,共26页。试卷主要包含了一次函数与二次函数的图象交点等内容,欢迎下载使用。
这是一份2021学年第30章 二次函数综合与测试测试题,共30页。试卷主要包含了二次函数y=a+bx+c,二次函数图像的顶点坐标是等内容,欢迎下载使用。
这是一份初中冀教版第30章 二次函数综合与测试随堂练习题,共29页。试卷主要包含了同一直角坐标系中,函数和,下列函数中,随的增大而减小的是等内容,欢迎下载使用。