冀教版九年级下册第30章 二次函数综合与测试同步达标检测题
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试同步达标检测题,共27页。试卷主要包含了抛物线的顶点为,二次函数y=a+bx+c等内容,欢迎下载使用。
九年级数学下册第三十章二次函数专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根分别为-1和5,则二次函数y=ax2+bx+c(a≠0)的对称轴是( )A.x=-3 B.x=-1 C.x=2 D.x=32、同一直角坐标系中,函数和(是常数,且)的图象可能是( )A. B.C. D.3、已知二次函数的图象如图所示,对称轴为直线,下列结论中正确的是( )A. B. C. D.4、已知二次函数y=ax2+bx+c的图象如图所示,则( )A.b>0,c>0,Δ=0 B.b<0,c>0,Δ=0C.b<0,c<0,Δ=0 D.b>0,c>0,Δ>05、抛物线的顶点为( )A. B. C. D.6、二次函数y=a+bx+c(a≠0)的图象如图所示,下列结论:①﹣4ac>0;②abc<0;③4a+b=0,④4a-2b+c>0;其中正确结论的个数是( )A.4 B.3 C.2 D.17、二次函数的图象如图所示,则下列结论正确的是( )A.,, B.,, C.,, D.,,8、已知二次函数,当时,x的取值范围是,且该二次函数图象经过点,则p的值不可能是( )A.-2 B.-1 C.4 D.79、将抛物线向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线表达式是( )A. B. C. D.10、若点,都在二次函数的图象上,且,则的取值范围是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某工厂今年八月份医用防护服的产量是50万件,计划九月份和十月份增加产量,如果月平均增长率为x,那么十月份医用防护服的产量y(万件)与x之间的函数表达式为______.2、将抛物线向右平移4个单位,所得到的抛物线的函数解析式是________.3、已知二次函数,当y随x的增大而增大时,自变量x的取值范围是______.4、某商品进价为26元,当每件售价为50元时,每天能售出40件,经市场调查发现每件售价每降低1元,则每天可多售出2件,当店里每天的利润要达到最大时,店主应把该商品每件售价降低______元.5、在东京奥运会跳水比赛中,中国小花全红婵的表现,令人印象深刻.在正常情况下,跳水运动员进行10米跳台训练时,必须在距水面5米之前完成规定的翻腾动作,并调整好入水姿势,否则容易出现失误.假设某运动员起跳后第t秒离水面的高度为h米,且.那么为了避免出现失误,这名运动员最多有_____秒时间,完成规定的翻腾动作.三、解答题(5小题,每小题10分,共计50分)1、如图,一名垒球运动员进行投球训练,站在点O开始投球,球出手的高度是2米,球运动的轨迹是抛物线,当球达到最高点E时,水平距离EG=20米,与地面的高度EF=6米,掷出的球恰好落在训练墙AB上B点的位置,AB=3米.(1)求抛物线的函数关系式;(2)求点O到训练墙AB的距离OA的长度.2、已知在平面直角坐标系中,拋物线经过点、,顶点为点.(1)求抛物线的表达式及顶点的坐标;(2)联结,试判断与是否相似,并证明你的结论;(3)抛物线上是否存在点,使得.如果存在,请求出点的坐标;如果不存在,请说明理由.3、在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=a+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=a+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.4、如图,因疫情防控需要,某校在足够大的空地利用旧墙MN和隔离带围成一个矩形隔离区ABCD,墙长为a米,AD≤MN,矩形隔离区的一边靠墙,其它三边一共用隔离带200米.(1)a=30,所围成的矩形隔离区的面积为1800平方米,求所利用旧墙AD的长;(2)若a=150.求矩形隔离区ABCD面积的最大值.5、某科技有限公司成功研制出一种市场急需的电子产品,已于当年投入生产并进行销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图,其中AB段为反比例函数图像的一部分,设公司销售这种电子产品的年利润为w(万元).(1)请求出y(万件)与x(元/件)之间的函数关系式;①求出当4≤x≤8时的函数关系式;②求出当8<x≤28时的函数关系式.(2)求出这种电子产品的年利润w(万元)与x(元/件)之间的函数关系式;(3)求出年利润的最大值. -参考答案-一、单选题1、C【解析】【分析】一元二次方程的两个根分别是和5,则二次函数图象与轴的交点坐标为、,根据函数的对称性即可求解.【详解】解:一元二次方程的两个根分别是和5,则二次函数图象与轴的交点坐标为、,根据函数的对称性,函数的对称轴为直线,故选:C.【点睛】本题考查抛物线与轴的交点与对称轴的关系,解题的关键是掌握若抛物线与轴交点的横坐标为和,则抛物线的对称轴为.2、D【解析】【分析】根据一次函数,二次函数的图象与性质逐一分析两个解析式中的的符号,再判断即可.【详解】解:选项A:由的图象可得: 由的图象可得:则 故A不符合题意;选项B:由的图象可得: 由的图象可得:则而抛物线的对称轴为: 则 故B不符合题意;选项C:由的图象可得: 由的图象可得:则 故C不符合题意;选项D:由的图象可得: 由的图象可得:则 而抛物线的对称轴为: 则 故D符合题意;故选D【点睛】本题考查的是一次函数与二次函数的图象共存问题,掌握“一次函数与二次函数的图象与性质”是解本题的关键.3、D【解析】【分析】由抛物线的开口方向判断与0的关系,由抛物线与轴的交点判断与0的关系,然后根据对称轴确定的符号,进而对所得结论进行判断.【详解】解:图象开口向上,与轴交于负半轴,对称轴在轴右侧,得到:,,,,A、,,,得,故选项错误,不符合题意;B、对称轴为直线,得,解得,故选项错误,不符合题意;C、当时,得,整理得:,故选项错误,不符合题意;D、根据图象知,抛物线与轴的交点横坐标,是一正一负,即,根据,整理得:,根据对称性可得出,则,故选项正确,符合题意;故选:D.【点睛】本题主要考查二次函数图象与二次函数系数之间的关系,解题的关键是掌握二次函数系数符号由抛物线开口方向、对称轴、抛物线与轴的交点、抛物线与轴交点的个数确定.4、B【解析】【分析】根据抛物线的开口方向和对称轴的位置确定b的符号,由抛物线与x轴的交点个数确定△的符号,由抛物线与y轴的交点位置确定c的符号,即可得出答案.【详解】解:∵抛物线的开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴>0,∴b<0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∵抛物线与x轴有一个交点,∴Δ=0,故选:B.【点睛】本题主要考查二次函数的图象与性质,关键是要牢记图象与系数的关系,牢记抛物线的对称轴公式.5、B【解析】【分析】根据抛物线的顶点式y=a(x-h)2+k可得顶点坐标是(h,k).【详解】解:∵y=2(x-1)2+3,∴抛物线的顶点坐标为(1,3),故选:B.【点睛】本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=a(x-h)2+k,顶点坐标是(h,k).6、B【解析】【分析】看抛物线与x轴交点个数,判定判别式的符号;根据抛物线开口方向,对称轴与x轴的交点位置,与y轴的交点位置,确定a,b,c的符号;根据对称轴,确定a,b之间的关系;当x= -2时,利用图像,观察直线x=-2与抛物线的交点位置,判定函数值的正负即可.【详解】∵抛物线与x轴有两个不同的交点,∴﹣4ac>0;故①正确;∵抛物线开口向下,与y轴交于正半轴,>0,∴a<0,b>0, c>0,∴abc<0;故②正确;∵,∴4a+b=0,故③正确;x= -2时,y=4a-2b+c,根据函数的增减性,得4a-2b+c<0;故④错误.故选B.【点睛】本题考查了抛物线的图像与各项系数的关系,抛物线与x轴的交点,对称性,增减性,熟练掌握抛物线的性质是解题的关键.7、D【解析】【分析】首先根据二次函数图象的开口方向确定,再根据对称轴在轴右,可确定与异号,然后再根据二次函数与轴的交点可以确定.【详解】解:抛物线开口向上,,对称轴在轴右侧,与异号,,抛物线与轴交于正半轴,,故选:.【点睛】此题主要考查了二次函数图象与系数的关系,关键是掌握二次函数,①二次项系数决定抛物线的开口方向和大小.当时,抛物线向上开口;当时,抛物线向下开口.②一次项系数和二次项系数共同决定对称轴的位置.当与同号时(即,对称轴在轴左; 当与异号时(即,对称轴在轴右.(简称:左同右异)③.常数项决定抛物线与轴交点. 抛物线与轴交于.8、C【解析】【分析】根据题意求得抛物线的对称轴,进而求得时,的取值范围,根据的纵坐标小于0,即可判断的范围,进而求解【详解】解:∵二次函数,当时,x的取值范围是,∴,二次函数开口向下解得,对称轴为当时,,经过原点,根据函数图象可知,当,,根据对称性可得时,二次函数图象经过点,或不可能是4故选C【点睛】本题考查了抛物线与一元一次不等式问题,求得抛物线的对称轴是解题的关键.9、C【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:因为y=x2-2x+3=(x-1)2+2.所以将抛物线y=(x-1)2+2先向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线的表达式为y=(x-1+2)2+2-1,即y=(x+1)2+1.故选:C.【点睛】本题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.10、D【解析】【分析】先求出抛物线的对称轴,再根据二次函数的性质,当点和在直线的右侧时;当点和在直线的两侧时,然后分别解两个不等式即可得到的范围.【详解】抛物线的对称轴为直线,∵,,当点和在直线的右侧,则,解得,当点和在直线的两侧,则,解得,综上所述,的范围为.故选:D.【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数图象上点的坐标满足其解析式是解题的关键.二、填空题1、【解析】【分析】某工厂今年八月份医用防护服的产量是50万件,月平均增长率为x,则九月份的产量为万件,十月份医用防护服的产量为万件,从而可得答案.【详解】解:十月份医用防护服的产量y(万件)与x之间的函数表达式为故答案为:【点睛】本题考查的是列二次函数关系式,掌握“两次变化后的量=原来量(1+增长率)2”是解本题的关键.2、y=(x-4)2【解析】【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】解:抛物线y=x2的顶点坐标为(0,0),向右平移4个单位后的图象的顶点坐标为(4,0),所以,所得图象的解析式为y=(x-4)2,故答案为:y=(x-4)2.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.3、【解析】【分析】函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大,进而可得自变量x的取值范围.【详解】解:由知函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大∴自变量x的取值范围是故答案为:.【点睛】本题考查了二次函数的图象与性质.解题的关键在于熟练把握二次函数的图象与性质.4、2【解析】【分析】设每件商品售价降低元,则每天的利润为:,然后求解计算最大值即可.【详解】解:设每件商品售价降低元则每天的利润为:,∵∴当时,最大为968元故答案为2.【点睛】本题考查了一元二次函数的应用.解题的关键在于确定函数解析式.5、##1.5【解析】【分析】根据题意,令,解一元二次方程求解即可.【详解】依题意整理得即解得(不符合题意,舍)故答案为:【点睛】本题考查了一元二次方程的应用,读懂题意将代入关系式是解题的关键.三、解答题1、 (1)抛物线的关系式为y=-0.01(x-20)2+6;(2)点O到训练墙AB的距离OA的长度为(20+10)米.【解析】【分析】(1)根据抛物线的顶点设关系式为y=a(x-20)2+6,再根据点C的坐标可得关系式;(2)把y=3代入可得答案.(1)解:由题意得,顶点E(20,6)和C(0,2),设抛物线的关系式为y=a(x-20)2+6,∴2=a(0-20)2+6,解得a=-0.01,∴抛物线的关系式为y=-0.01(x-20)2+6;(2)(2)当y=3时,3=-0.01(x-20)2+6,解得x1=20+10,x2=20-10(舍去),答:点O到训练墙AB的距离OA的长度为(20+10)米.【点睛】本题考查了二次函数的实际应用,利用待定系数法得到抛物线的关系式是解题关键.2、 (1),顶点坐标为:;(2),证明见解析;(3)存在点P,,理由见解析.【解析】【分析】(1)根据题意设抛物线解析式为:,将点C代入解得,代入抛物线可得函数解析式;将一般式化为顶点式即可确定顶点坐标;(2)结合图象,分别求出的三边长,的三边长,由勾股定理逆定理可得为直角三角形,且两个三角形的三条边对应成比例,即可证明;(3)设存在点P使,作线段AC的中垂线交AC于点E,交AP于点F,连接CF,可得,,利用等腰直角三角形的性质可得,,再由勾股定理可得,设,根据直角坐标系中两点之间的距离利用勾股定理可得,同理可得=,利用代入消元法解方程即可确定点F的坐标,然后求出直线AF的直线解析式,联立抛物线解析式求交点坐标即可得.(1)解:抛物线经过点,,,设抛物线解析式为:,将点C代入可得:,解得:,∴,∴顶点坐标为:;(2)解:如图所示:为直角三角形且三边长分别为:,,,的三边长分别为:,,,∴,∴为直角三角形,∵,∴;(3)解:设存在点P使,作线段AC的中垂线交AC于点E,交AP于点F,连接CF,如(2)中图:∴,,∵,∴,∴为等腰直角三角形,∴,,∴,即解得:,设,∴,,∴,整理得:①,=,即②,将①代入②整理得:,解得:,,∴,,∴或(不符合题意舍去),∴,,设直线FA解析式为:,将两个点代入可得:,解得:,∴,∴联立两个函数得:,将①代入②得:,整理得:,解得:,,当时,,∴.【点睛】题目主要考查待定系数法确定函数解析式,相似三角形得判定和性质,中垂线的性质,等腰直角三角形的性质,勾股定理等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.3、 (1)在,见解析(2)a=﹣1,b=2(3)当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为【解析】【分析】(1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y=x+m上;(2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;(3)设平移后的抛物线为y=﹣+px+q,其顶点坐标为(,),根据题意得出=,由抛物线y=﹣+px+q与y轴交点的纵坐标为q,即可得出q=-=,从而得出q的最大值.(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=a+bx+1得,解得a=﹣1,b=2;(3)由(2)知,抛物线为y=﹣+2x+1,设平移后的抛物线为y=﹣+px+q,∴顶点坐标为(,),∵其顶点仍在直线y=x+1上,∴=,∴q=-=, ∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.【点睛】本题考查了图像与点的关系,待定系数法确定函数解析式,配方法求二次函数最值,熟练掌握待定系数法,灵活配方求最值是解题的关键.4、 (1)AD=20米;(2)当x=100时,S最大=5000米2.【解析】【分析】(1)设AD=x,AB=(200-x)÷2=100-,根据长方形面积公式列方程,解方程,根据墙长得出AD=20米;(2)矩形隔离区ABCD面积用S表示,根据长方形面积公式列出面积函数S=然后配方为S即可.(1)解:设AD=x,AB=(200-x)÷2=100-,∴根据题意得:,整理得,解得:,∵a=30,∴AD=20米;(2)解:矩形隔离区ABCD面积用S表示,则S=,∵a=150>100,∴当x=100时,S最大=5000米2.【点睛】本题考查长方形面积,列一元二次方程解图形问题应用题,列二次函数解图形问题的最值问题,掌握长方形面积,列一元二次方程解图形问题应用题,列二次函数解图形问题的最值问题是解题关键.5、 (1)①y=;②y=-x+28(2)(3)年利润最大为114元【解析】【分析】(1)①当4≤x≤8时,设(k≠0).将点A(4,40)的坐标代入计算即可;②当8<x≤28时,设y=k′x+b(k′≠0). 分别将点B(8,20),C(28,0)的坐标代入y=k′x+b,计算即可;(2)分4≤x≤8、8<x≤28两种情况,利润w(万元)与x(元/件)之间的函数关系式;(3)分4≤x≤8、8<x≤28两种情况,分别求出w的最大值,进而求解;(1)①当4≤x≤8时,设(k≠0).将点A(4,40)的坐标代入,得k=4×40=160,∴y=②当8<x≤28时,设y=k′x+b(k′≠0). 分别将点B(8,20),C(28,0)的坐标代入y=k′x+b,得解得∴y=-x +28(2)当4≤x≤8时,w=当8<x≤28时,w=(x-4)y=(x-4)(-x+28)=-x2+32x-112=-(x-16)2+114综上可知,w(万元)与x(元/件)之间的函数关系式为(3)当4≤x≤8时,∵-640<0,∴w随x增大而增大,∴当x=8时,w有最大值,为 当8<x≤28时,∵-1<0∴当x=16时,w有最大值,为114∵80<114∴当每件的销售价格定为16元时,年利润最大为114元【点睛】本题主要考查了反比例函数与二次函数的综合应用,在商品经营活动中,经常会遇到求最大利润,最大销量等问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义;解题时注意,依据函数图象可得函数关系式为分段函数,解决问题时需要运用分类思想以及数形结合思想进行求解.
相关试卷
这是一份数学九年级下册第30章 二次函数综合与测试同步达标检测题,共36页。试卷主要包含了抛物线的顶点为等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试一课一练,共31页。试卷主要包含了二次函数的最大值是,若二次函数y=a等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试巩固练习,共37页。