![2022年强化训练冀教版九年级数学下册第三十章二次函数专题测评试题(精选)第1页](http://m.enxinlong.com/img-preview/2/3/12721003/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版九年级数学下册第三十章二次函数专题测评试题(精选)第2页](http://m.enxinlong.com/img-preview/2/3/12721003/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版九年级数学下册第三十章二次函数专题测评试题(精选)第3页](http://m.enxinlong.com/img-preview/2/3/12721003/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年第30章 二次函数综合与测试当堂检测题
展开
这是一份2020-2021学年第30章 二次函数综合与测试当堂检测题,共32页。试卷主要包含了二次函数的最大值是,若点A,抛物线的顶点为等内容,欢迎下载使用。
九年级数学下册第三十章二次函数专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,1),(4,6),(3,1),则( )
A.y≤3 B.y≤6 C.y≥-3 D.y≥6
2、已知二次函数,当时,x的取值范围是,且该二次函数图象经过点,则p的值不可能是( )
A.-2 B.-1 C.4 D.7
3、已知二次函数的图象如图所示,根据图中提供的信息,可求得使成立的x的取值范围是( )
A. B. C. D.或
4、如图,若二次函敞的图象过点,且与x轴交点横坐标分别为,,其中,.得出结论:①;②;③;④.上述结论正确的有( )个.
A.1 B.2 C.3 D.4
5、二次函数的最大值是( )
A. B. C.1 D.2
6、若点A(-1,y1),B(0,y2),C(1,y3)都在二次函数y=2x2+x-1的图象上,则y1,y2,y3的大小关系是( )
A.y1<y2><y3 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y1
7、已知二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论错误的是( )
A. B. C. D.
8、抛物线的顶点为( )
A. B. C. D.
9、二次函数的图象如图所示,那么下列说法正确的是( )
A. B.
C. D.
10、已知点,,都在函数的图象上,则( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知抛物线与轴交于A、B两点,对称轴与抛物线交于C,与轴交于点D,圆C的半径为1.8,G为圆C上一动点,P为AG的中点,则DP的最大值为_________.
2、请写出一个开口向下且过点(0,﹣4)的抛物线表达式为 _________________.
3、如果抛物线经过点A(3,6)和点B(﹣1,6),那么这条抛物线的对称轴是直线_____.
4、若关于的函数与轴只有一个交点,则实数的值为____.
5、如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条拋物线的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值为_________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,二次函数(m是实数,且)的图像与x轴交于A、B两点(点A在点B的左侧),其对称轴与x轴交于点C,已知点D位于第一象限,且在对称轴上,,点E在x轴的正半轴上,.连接ED并延长交y轴于点F,连接AF.
(1)求A、B、C三点的坐标(用数字或含m的式子表示);
(2)已知点Q在抛物线的对称轴上,当的周长的最小值等于,求m的值.
2、如图,抛物线y=ax2+bx﹣3经过A、B、C三点,点A(﹣3,0)、C(1,0),点B在y轴上.点P是直线AB下方的抛物线上一动点(不与A、B重合).
(1)求此抛物线的解析式;
(2)过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标;
(3)点Q是抛物线对称轴上一动点,是否存在点Q,使以点A、B、Q为顶点的三角形为直角三角形?若存在,请求出点Q坐标;若不存在,请说明理由.
3、如图,抛物线与轴交于两点(A点在B点的左侧),与y轴交于点C,连接AC,BC,A点的坐标是(,0),点P是抛物线上的一个动点,其横坐标为m,且m>0.
(1)求此抛物线的解析式;
(2)若点Q是直线AC上的一个动点,且位于x轴的上方,当PQ∥y轴时,作PM⊥PQ,交抛物线于点M(点M在点P的右侧),以PQ,PM为邻边构造矩形PQNM,求该矩形周长的最小值;
(3)设抛物线在点C与点P之间的部分(含点C和P)最高点与最低点的纵坐标之差为h.
①求h关于m的函数解析式,并写出自变量m的取值范围;
②当h=16时,直接写出△BCP的面积.
4、2022年北京冬奥会即将召开,敢起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴建立平而直角坐标系,图中的抛物线近似表示滑雪场地上的一座小山坡,某运动员从点О正上方3米处的A点滑出,滑出后沿一段抛物线运动.
(1)当运动员运动到离A处的水平距离为4米时离水平线的高度为7米.求抛物线的函数表达式(不要求写出自变量工的取值范围);
(2)在(1)的条件下.当运动员运动的水平距离为多少米时,运动员恰好落在小山坡的B处?
5、阅读理解,并完成相应的问题.
如图,重庆轨道2号线是中国西部地区第一条城市轨道交通线路,也是中国第一条跨座式单轨线路,因其列车在李子坝站穿楼而过闻名全国.小军了解到列车从牛角沱站开往李子坝站时,在距离停车线256米处开始减速.他想知道列车从减速开始,经过多少秒停下来,以及最后一秒滑行的距离.为了解决这个问题,小军通过建立函数模型来描述列车离停车线的距离s(米)与滑行时间t(秒)的函数关系,再应用该函数解决相应的问题.
(1)建立模型
①收集数据:
r(秒)
0
4
8
12
16
20
24
……
s(米)
256
196
144
100
64
36
16
……
②建立平面直角坐标系为了观察s(米)与t(秒)的关系,建立如图所示的平面直角坐标系.
③描点连线:请在平面直角坐标系中将表中未描出的点补充完整,并用平滑的曲线依次连接.
④选择函数模型:观察这条曲线的形状,它可能是_______函数的图象.
⑤求函数解析式;
解:设,因为时,,所以,则.
请根据表格中的数据,求a,b的值.(请写出详细解答过程).
验证:把a,b的值代入中,并将其余几对值代入求出的解析式,发现它们_______满足该函数解析式.(填“都”或“不都”)
结论:减速阶段列车离停车线的距离s(米)与减速时间t(秒)的函数关系式为__________.
(2)应用模型
列车从减速开始经过_______秒,列车停止;最后一秒钟,列车滑行的距离为_______米.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据图像经过三点求出函数表达式,再根据最值的求法求出结果.
【详解】
解:∵二次函数y=ax2+bx+c经过(﹣1,1),(4,6),(3,1),
∴,
解得:,
∴函数表达式为y=x2-2x-2,开口向上,
∴函数的最小值为=,即y≥-3,
故选C.
【点睛】
本题考查了待定系数法求二次函数表达式,二次函数的最值,属于基础题,解题的关键是掌握二次函数最值的求法.
2、C
【解析】
【分析】
根据题意求得抛物线的对称轴,进而求得时,的取值范围,根据的纵坐标小于0,即可判断的范围,进而求解
【详解】
解:∵二次函数,当时,x的取值范围是,
∴,二次函数开口向下
解得,对称轴为
当时,,
经过原点,
根据函数图象可知,当,,
根据对称性可得时,
二次函数图象经过点,
或
不可能是4
故选C
【点睛】
本题考查了抛物线与一元一次不等式问题,求得抛物线的对称轴是解题的关键.
3、D
【解析】
【分析】
根据函数图象写出y=1对应的自变量x的值,再根据判断范围即可.
【详解】
由图可知,使得时
使成立的x的取值范围是或
故选:D.
【点睛】
本题考查了二次函数与不等式,准确识图是解题的关键.
4、C
【解析】
【分析】
由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,可判断①,二次函敞的图象过点,结合图象可得:在抛物线上,再求解抛物线的对称轴可判断②,二次函敞的顶点坐标为:可判断③,先利用时的函数值求解的取值范围,从而可判断④,从而可得答案.
【详解】
解:由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,
故①符合题意;
二次函敞的图象过点,结合图象可得:
在抛物线上,
抛物线的对称轴为:
故②符合题意;
二次函敞的顶点坐标为:结合图象可得:
而
故③不符合题意;
当时,
又由图象可得:时,
解得:
故④符合题意;
综上:符合题意的有:①②④
故选C
【点睛】
本题考查的是二次函数的图象与性质,掌握“利用二次函数的图象与性质判断代数式的符号”是解本题的关键.
5、D
【解析】
【分析】
由图象的性质可知在直线处取得最大值,将代入解析式计算求解即可.
【详解】
解:由图象的性质可知,在直线处取得最大值
∴将代入中得
∴最大值为2
故答案为:2.
【点睛】
本题考查了二次函数的最值.解题的关键在于掌握二次函数的图象与性质.
6、B
【解析】
【分析】
由题意可知函数图象的对称轴、增减性;根据对称将A转化到对称轴的右侧,得到的坐标表示,然后比较三点横坐标的大小,进而判断三点纵坐标的大小即可.
【详解】
解:由知该函数图象开口向上,对称轴是直线,在对称轴的右侧,y随x的增加而增大
∴点A对称的点的坐标为
∵
∴
故选B.
【点睛】
本题考查了二次函数的图象与性质.解题的关键在于掌握该函数图象与性质.
7、B
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:A、函数的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故A正确,不符合题意;
B、函数的对称轴为:x=−=1,故2a+b=0,即,图象与x轴交于点A(−1,0),
故当时,,即,故B错误,符合题意;
C、图象与x轴交于点A(−1,0),其对称轴为直线x=1,则图象与x轴另外一个交点坐标为:(3,0),故当x=2时,y=4a+2b+c>0,故C正确,不符合题意;
D、图象与x轴另外一个交点坐标为:(3,0),即x=3时,y=9a+3b+c=0,正确,不符合题意;
故选:B.
【点睛】
本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.
8、B
【解析】
【分析】
根据抛物线的顶点式y=a(x-h)2+k可得顶点坐标是(h,k).
【详解】
解:∵y=2(x-1)2+3,
∴抛物线的顶点坐标为(1,3),
故选:B.
【点睛】
本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=a(x-h)2+k,顶点坐标是(h,k).
9、D
【解析】
【分析】
根据二次函数图象性质解题.
【详解】
解:A.由图可知,二次函数图象的对称轴为:x=1,即,故A不符合题意;
B.二次函数图象与y轴交于负半轴,即c0.
点Q是直线AC上的一个动点,且位于x轴的上方,PQ∥y轴
点在点上方,
,,设直线的解析式为
解得
直线的解析式为
设,则
抛物线的解析式为
对称轴为,顶点坐标为,
根据对称性可得
设矩形的周长为,
①当时,,不能构成矩形,
②当时,
则
当时,
③当时,
则
对称轴为
则当时,不存在最小值
综上所述,矩形的周长的最小值为
(3)
①抛物线的解析式为
对称轴为,顶点坐标为,
又
当时,
解得,
当时,
当时,
②当时,
当时,
解得
则
如图,过点作轴交于点,过点作于点,
抛物线的解析式为
令,则
解得
【点睛】
本题考查了二次函数综合问题,待定系数法求二次函数解析式,二次函数与矩形问题,二次函数与三角形面积问题,掌握二次函数的性质与一次函数的性质是解题的关键.
4、 (1)
(2)运动员运动的水平距离为12米时,运动员恰好落在小山坡的B处
【解析】
【分析】
(1)运用待定系数法求解即可;
(2)设运动员运动的水平距离为m米时,依题意列出方程求解即可.
(1)
由题意可知抛物线过点和,将其代人得:
,
解得: ,
∴抛物线的函数表达式为:
(2)
设运动员运动的水平距离为m米时,依题意得:
整理得:,
解得: (舍去),
故运动员运动的水平距离为12米时,运动员恰好落在小山坡的B处.
【点睛】
本题考查二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.
5、 (1)二次, 都, s=
(2)32,0.25
【解析】
【分析】
(1)通过描点、连线,观察图形可知,图象可能是二次函数的函数的图象;将点(4,196),(8,144)代入s=at2+bt+256,得a、b的值,再将其余几对值代入求出的解析式,发现它们都满足该函数解析式,最后得到结论:减速阶段列车离停车线的距离s(米)与减速时间t(秒)的函数关系式;
(2)让s=0,可求出列车从减速开始到列车停止的时间,然后将t=31代入s=t2-16t+256,即可求最后一秒钟,列车滑行的距离.
(1)
解:描点连线如下图:
由这条曲线的形状可知,它可能是二次函数的函数的图象;
设s=at2+bt+c(a≠0),因为t=0时,s=256,所以c=256,则s=at2+bt+256,将点(4,196),(8,144)代入s=at2+bt+256,得:
,
解这个方程组得:,
∴s=t2-16t+256,
当t=12时,×122-16×12+256=100,
当t=16时,×162-16×16+256=64,
当t=20时,×202-16×20+256=36,
当t=24时,×242-16×24+256=16,
∴其余几对值代入求出的解析式,发现它们都满足该函数解析式,
∴结论:减速阶段列车离停车线的距离s(米)与减速时间t(秒)的函数关系式为s=t2-16t+256(t≥0);
(2)
∵列车停止,
∴s=0,
∴t2-16t+256=0,
解这个方程得:t=32,
∴列车从减速开始经过32秒,列车停止;
∴最后一秒钟时31秒,
当t=31时,×312-16×31+256=0.25,
∴最后一秒钟,列车滑行的距离为0.25米.
【点睛】
本题考查了二次函数的性质,二元一次方程组的解法、一元二次方程的解法,做题的关键是确定二次函数的解析式.
相关试卷
这是一份初中第30章 二次函数综合与测试同步练习题,共37页。试卷主要包含了二次函数图像的顶点坐标是等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试练习,共24页。试卷主要包含了抛物线的顶点坐标为等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试同步练习题,共30页。试卷主要包含了二次函数y=ax2﹣4ax+c,抛物线的对称轴是,抛物线,,的图象开口最大的是,已知平面直角坐标系中有点A等内容,欢迎下载使用。